Improving Energy Efficiency of Database Clusters Through Prefetching and Caching

Yi Zhou, Shubbhi Taneja, Mohammed I. Alghamdi, X. Qin
{"title":"Improving Energy Efficiency of Database Clusters Through Prefetching and Caching","authors":"Yi Zhou, Shubbhi Taneja, Mohammed I. Alghamdi, X. Qin","doi":"10.1109/CCGRID.2018.00065","DOIUrl":null,"url":null,"abstract":"The goal of this study is to optimize energy efficiency of database clusters through prefetching and caching strategies. We design a workload-skewness scheme to collectively manage a set of hot and cold nodes in a database cluster system. The prefetching mechanism fetches popular data tables to the hot nodes while keeping unpopular data in cold nodes. We leverage a power management module to aggressively turn cold nodes in the low-power mode to conserve energy consumption. We construct a prefetching model and an energy-saving model to govern the power management module in database lusters. The energy-efficient prefetching and caching mechanism is conducive to cutting back the number of power-state transitions, thereby offering high energy efficiency. We systematically evaluate energy conservation technique in the process of managing, fetching, and storing data on clusters supporting database applications. Our experimental results show that our prefetching/caching solution significantly improves energy efficiency of the existing PostgreSQL system.","PeriodicalId":321027,"journal":{"name":"2018 18th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 18th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCGRID.2018.00065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The goal of this study is to optimize energy efficiency of database clusters through prefetching and caching strategies. We design a workload-skewness scheme to collectively manage a set of hot and cold nodes in a database cluster system. The prefetching mechanism fetches popular data tables to the hot nodes while keeping unpopular data in cold nodes. We leverage a power management module to aggressively turn cold nodes in the low-power mode to conserve energy consumption. We construct a prefetching model and an energy-saving model to govern the power management module in database lusters. The energy-efficient prefetching and caching mechanism is conducive to cutting back the number of power-state transitions, thereby offering high energy efficiency. We systematically evaluate energy conservation technique in the process of managing, fetching, and storing data on clusters supporting database applications. Our experimental results show that our prefetching/caching solution significantly improves energy efficiency of the existing PostgreSQL system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过预取和缓存提高数据库集群的能源效率
本研究的目的是通过预取和缓存策略来优化数据库集群的能源效率。我们设计了一个工作负载偏度方案来共同管理数据库集群系统中的一组热节点和一组冷节点。预取机制将流行的数据表提取到热节点,而将不流行的数据保留在冷节点中。我们利用电源管理模块积极地将冷节点切换到低功耗模式,以节省能源消耗。我们构建了一个预取模型和一个节能模型来控制数据库集群中的电源管理模块。节能的预取和缓存机制有助于减少功率状态转换的次数,从而提供高能效。我们系统地评估了在支持数据库应用的集群上管理、获取和存储数据过程中的节能技术。实验结果表明,我们的预取/缓存解决方案显著提高了现有PostgreSQL系统的能源效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Extreme-Scale Realistic Stencil Computations on Sunway TaihuLight with Ten Million Cores RideMatcher: Peer-to-Peer Matching of Passengers for Efficient Ridesharing Nitro: Network-Aware Virtual Machine Image Management in Geo-Distributed Clouds Improving Energy Efficiency of Database Clusters Through Prefetching and Caching Main-Memory Requirements of Big Data Applications on Commodity Server Platform
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1