Main-Memory Requirements of Big Data Applications on Commodity Server Platform

Hosein Mohammadi Makrani, S. Rafatirad, A. Houmansadr, H. Homayoun
{"title":"Main-Memory Requirements of Big Data Applications on Commodity Server Platform","authors":"Hosein Mohammadi Makrani, S. Rafatirad, A. Houmansadr, H. Homayoun","doi":"10.1109/CCGRID.2018.00097","DOIUrl":null,"url":null,"abstract":"The emergence of big data frameworks requires computational and memory resources that can naturally scale to manage massive amounts of diverse data. It is currently unclear whether big data frameworks such as Hadoop, Spark, and MPI will require high bandwidth and large capacity memory to cope with this change. The primary purpose of this study is to answer this question through empirical analysis of different memory configurations available for commodity server and to assess the impact of these configurations on the performance Hadoop and Spark frameworks, and MPI based applications. Our results show that neither DRAM capacity, frequency, nor the number of channels play a critical role on the performance of all studied Hadoop as well as most studied Spark applications. However, our results reveal that iterative tasks (e.g. machine learning) in Spark and MPI are benefiting from a high bandwidth and large capacity memory.","PeriodicalId":321027,"journal":{"name":"2018 18th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 18th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCGRID.2018.00097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

The emergence of big data frameworks requires computational and memory resources that can naturally scale to manage massive amounts of diverse data. It is currently unclear whether big data frameworks such as Hadoop, Spark, and MPI will require high bandwidth and large capacity memory to cope with this change. The primary purpose of this study is to answer this question through empirical analysis of different memory configurations available for commodity server and to assess the impact of these configurations on the performance Hadoop and Spark frameworks, and MPI based applications. Our results show that neither DRAM capacity, frequency, nor the number of channels play a critical role on the performance of all studied Hadoop as well as most studied Spark applications. However, our results reveal that iterative tasks (e.g. machine learning) in Spark and MPI are benefiting from a high bandwidth and large capacity memory.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
商品服务器平台上大数据应用的主存需求
大数据框架的出现需要计算和内存资源,这些资源可以自然扩展以管理大量不同的数据。目前还不清楚Hadoop、Spark和MPI等大数据框架是否需要高带宽和大容量内存来应对这种变化。本研究的主要目的是通过对商品服务器可用的不同内存配置的实证分析来回答这个问题,并评估这些配置对Hadoop和Spark框架以及基于MPI的应用程序性能的影响。我们的研究结果表明,DRAM容量、频率和通道数量对所有研究的Hadoop以及大多数研究的Spark应用程序的性能都没有关键作用。然而,我们的研究结果表明,Spark和MPI中的迭代任务(例如机器学习)受益于高带宽和大容量内存。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Extreme-Scale Realistic Stencil Computations on Sunway TaihuLight with Ten Million Cores RideMatcher: Peer-to-Peer Matching of Passengers for Efficient Ridesharing Nitro: Network-Aware Virtual Machine Image Management in Geo-Distributed Clouds Improving Energy Efficiency of Database Clusters Through Prefetching and Caching Main-Memory Requirements of Big Data Applications on Commodity Server Platform
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1