Optimization in the now: Dynamic peephole optimization for hierarchical planning

Dylan Hadfield-Menell, L. Kaelbling, Tomas Lozano-Perez
{"title":"Optimization in the now: Dynamic peephole optimization for hierarchical planning","authors":"Dylan Hadfield-Menell, L. Kaelbling, Tomas Lozano-Perez","doi":"10.1109/ICRA.2013.6631225","DOIUrl":null,"url":null,"abstract":"For robots to effectively interact with the real world, they will need to perform complex tasks over long time horizons. This is a daunting challenge, but recent advances using hierarchical planning [1] have been able to provide leverage on this problem. Unfortunately, this approach makes no effort to account for the execution cost of an abstract plan and often arrives at poor quality plans. This paper outlines a method for dynamically improving a hierarchical plan during execution. We frame the underlying question as one of evaluating the resource needs of an abstract operator and propose a general way to approach estimating them. We ran experiments in challenging domains and observed up to 30% reduction in execution cost when compared with a standard hierarchical planner.","PeriodicalId":259746,"journal":{"name":"2013 IEEE International Conference on Robotics and Automation","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Robotics and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRA.2013.6631225","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

For robots to effectively interact with the real world, they will need to perform complex tasks over long time horizons. This is a daunting challenge, but recent advances using hierarchical planning [1] have been able to provide leverage on this problem. Unfortunately, this approach makes no effort to account for the execution cost of an abstract plan and often arrives at poor quality plans. This paper outlines a method for dynamically improving a hierarchical plan during execution. We frame the underlying question as one of evaluating the resource needs of an abstract operator and propose a general way to approach estimating them. We ran experiments in challenging domains and observed up to 30% reduction in execution cost when compared with a standard hierarchical planner.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
当下的优化:层级规划的动态窥视孔优化
为了让机器人有效地与现实世界互动,它们需要在很长一段时间内执行复杂的任务。这是一个令人生畏的挑战,但是最近使用分层规划[1]的进展已经能够在这个问题上提供杠杆作用。不幸的是,这种方法没有考虑抽象计划的执行成本,并且经常得到质量很差的计划。本文提出了一种分级计划在执行过程中动态改进的方法。我们将潜在的问题定义为一个评估抽象算子的资源需求的问题,并提出了一种估计资源需求的一般方法。我们在具有挑战性的领域进行了实验,并观察到与标准分层规划器相比,执行成本降低了30%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Representation of vehicle dynamics in haptic teleoperation of aerial robots Adaptive visual tracking with reacquisition ability for arbitrary objects A novel method to simplify supervisor for AMS based on Petri nets and inequality analysis Human-robot cooperative object swinging Gravity compensation control of compliant joint systems with multiple drives
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1