ML Based Sign Language Recognition System

K. Amrutha, P. Prabu
{"title":"ML Based Sign Language Recognition System","authors":"K. Amrutha, P. Prabu","doi":"10.1109/ICITIIT51526.2021.9399594","DOIUrl":null,"url":null,"abstract":"This paper reviews different steps in an automated sign language recognition (SLR) system. Developing a system that can read and interpret a sign must be trained using a large dataset and the best algorithm. As a basic SLR system, an isolated recognition model is developed. The model is based on vision-based isolated hand gesture detection and recognition. Assessment of ML-based SLR model was conducted with the help of 4 candidates under a controlled environment. The model made use of a convex hull for feature extraction and KNN for classification. The model yielded 65% accuracy.","PeriodicalId":161452,"journal":{"name":"2021 International Conference on Innovative Trends in Information Technology (ICITIIT)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"49","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Innovative Trends in Information Technology (ICITIIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICITIIT51526.2021.9399594","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 49

Abstract

This paper reviews different steps in an automated sign language recognition (SLR) system. Developing a system that can read and interpret a sign must be trained using a large dataset and the best algorithm. As a basic SLR system, an isolated recognition model is developed. The model is based on vision-based isolated hand gesture detection and recognition. Assessment of ML-based SLR model was conducted with the help of 4 candidates under a controlled environment. The model made use of a convex hull for feature extraction and KNN for classification. The model yielded 65% accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于机器学习的手语识别系统
本文综述了自动手语识别(SLR)系统的各个步骤。开发一个可以读取和解释标志的系统必须使用大型数据集和最佳算法进行训练。作为一个基本的单反系统,建立了一个孤立识别模型。该模型是基于视觉的孤立手势检测和识别。在受控环境下,通过4个候选对象对基于ml的单反模型进行评估。该模型使用凸包进行特征提取,使用KNN进行分类。该模型的准确率为65%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Architectural Vision of Cloud Computing in the Indian Government Machine Learning Based Breast Cancer Visualization and Classification Application of Artificial Intelligence for Maintenance Modelling of Critical Machines in Solid Tire Manufacturing ML Based Sign Language Recognition System ICT in Mitigating Challenges of Life Amid COVID-19 and Emerging Business Opportunities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1