A Face-Mask Detection Approach based on YOLO Applied for a New Collected Dataset

Sahand Abbasi, Haniyeh Abdi, A. Ahmadi
{"title":"A Face-Mask Detection Approach based on YOLO Applied for a New Collected Dataset","authors":"Sahand Abbasi, Haniyeh Abdi, A. Ahmadi","doi":"10.1109/CSICC52343.2021.9420599","DOIUrl":null,"url":null,"abstract":"Since the beginning of the COVID-19 pandemic, many lives are in danger. According to WHO (World Health Organization)’s statements, breathing without a mask is highly dangerous in public and crowded places. Indeed, wearing masks reduces the chance of being infected, and detecting unmasked people is a waste of resources if not performed automatically. AI techniques are used to increase the detection speed of masked and unmasked faces. In this research, a novel dataset and two different methods are proposed to detect masked and unmasked faces in real-time. In the first method, an object detection model is applied to find and classify masked and unmasked faces. In the second method, a YOLO face detector spots faces (whether masked or not), and then the faces are classified into masked and unmasked categories with a novel fast yet effective CNN architecture. By the methods proposed in this paper, the accuracy of 99.5% is achieved on the newly collected dataset.","PeriodicalId":374593,"journal":{"name":"2021 26th International Computer Conference, Computer Society of Iran (CSICC)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 26th International Computer Conference, Computer Society of Iran (CSICC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSICC52343.2021.9420599","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

Since the beginning of the COVID-19 pandemic, many lives are in danger. According to WHO (World Health Organization)’s statements, breathing without a mask is highly dangerous in public and crowded places. Indeed, wearing masks reduces the chance of being infected, and detecting unmasked people is a waste of resources if not performed automatically. AI techniques are used to increase the detection speed of masked and unmasked faces. In this research, a novel dataset and two different methods are proposed to detect masked and unmasked faces in real-time. In the first method, an object detection model is applied to find and classify masked and unmasked faces. In the second method, a YOLO face detector spots faces (whether masked or not), and then the faces are classified into masked and unmasked categories with a novel fast yet effective CNN architecture. By the methods proposed in this paper, the accuracy of 99.5% is achieved on the newly collected dataset.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于YOLO的人脸检测方法在新采集数据集上的应用
自2019冠状病毒病大流行开始以来,许多人的生命处于危险之中。根据世界卫生组织的声明,在公共场所和拥挤的地方不戴口罩呼吸是非常危险的。事实上,戴口罩可以减少被感染的机会,如果不自动检测未戴口罩的人是浪费资源。人工智能技术用于提高蒙面和未蒙面人脸的检测速度。在这项研究中,提出了一个新的数据集和两种不同的方法来实时检测被掩盖和未被掩盖的人脸。在第一种方法中,使用目标检测模型来发现和分类被屏蔽和未被屏蔽的人脸。在第二种方法中,YOLO人脸检测器识别人脸(无论是否被屏蔽),然后使用一种新的快速有效的CNN架构将人脸分类为被屏蔽和未被屏蔽的类别。通过本文提出的方法,在新采集的数据集上,准确率达到99.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Transfer Learning for End-to-End ASR to Deal with Low-Resource Problem in Persian Language An SDN-based Firewall for Networks with Varying Security Requirements A Face-Mask Detection Approach based on YOLO Applied for a New Collected Dataset Telegram group recommendation based on users' migration Design of an IoT-based Flood Early Detection System using Machine Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1