Hindrances in the Fitness Landscape and Remedies to Achieve Optimization

Khaled Almejalli
{"title":"Hindrances in the Fitness Landscape and Remedies to Achieve Optimization","authors":"Khaled Almejalli","doi":"10.1109/CSPIS.2018.8642734","DOIUrl":null,"url":null,"abstract":"Past several decades have witnessed a rapid increase in the nature-inspired computational techniques. Evolutionary Computation is one such group of algorithms inspired by the theory of natural selection and survival of the fittest. This paper presents some for the key problems in the fitness landscape of such algorithms that make it difficult to converge to an optimum solution. These problems not only yield poor convergence but makes the use of Evolutionary Computation techniques less effective. This work then suggests some of the remedies to overcome these hindrances while designing the problem and the objective function. If properly incorporated, the suggested countermeasures enhance the ability of these methods in reaching an optimum solution faster and without entrapment in the local optima.","PeriodicalId":251356,"journal":{"name":"2018 International Conference on Signal Processing and Information Security (ICSPIS)","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Signal Processing and Information Security (ICSPIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSPIS.2018.8642734","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Past several decades have witnessed a rapid increase in the nature-inspired computational techniques. Evolutionary Computation is one such group of algorithms inspired by the theory of natural selection and survival of the fittest. This paper presents some for the key problems in the fitness landscape of such algorithms that make it difficult to converge to an optimum solution. These problems not only yield poor convergence but makes the use of Evolutionary Computation techniques less effective. This work then suggests some of the remedies to overcome these hindrances while designing the problem and the objective function. If properly incorporated, the suggested countermeasures enhance the ability of these methods in reaching an optimum solution faster and without entrapment in the local optima.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
健身领域的障碍和实现优化的补救措施
在过去的几十年里,受自然启发的计算技术得到了迅速发展。进化计算就是这样一组受自然选择和适者生存理论启发的算法。本文提出了这类算法在适应度方面的一些关键问题,这些问题使其难以收敛到最优解。这些问题不仅产生较差的收敛性,而且使进化计算技术的使用效率降低。然后,在设计问题和目标函数时,提出了克服这些障碍的一些补救措施。如果适当结合,建议的对策可以提高这些方法更快地达到最优解决方案的能力,而不会陷入局部最优。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Implementing a performant security control for Industrial Ethernet Hindrances in the Fitness Landscape and Remedies to Achieve Optimization Low Complexity Receivers for Massive MIMO Cloud Radio Access Systems Using Virtual Agent for Facilitating Online Questionnaire Surveys Autonomous Building Detection Using Region Properties and PCA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1