Autonomous Building Detection Using Region Properties and PCA

N. Aburaed, A. Panthakkan, Husameldin Mukhtar, W. Mansoor, S. Almansoori, Hussain Al-Ahmad
{"title":"Autonomous Building Detection Using Region Properties and PCA","authors":"N. Aburaed, A. Panthakkan, Husameldin Mukhtar, W. Mansoor, S. Almansoori, Hussain Al-Ahmad","doi":"10.1109/CSPIS.2018.8642721","DOIUrl":null,"url":null,"abstract":"This paper proposes an algorithm for autonomous building detection in remote sensing images. The basis of the algorithm relies on the fact that each channel in RGB color space conveys different information. Furthermore, region properties and Principal Component Analysis (PCA) are used to distinguish between buildings and other regions in order to reduce false positive cases. The images used to test the proposed algorithm were obtained from DubaiSat-2, which offers multispectral images with 1-m accuracy.","PeriodicalId":251356,"journal":{"name":"2018 International Conference on Signal Processing and Information Security (ICSPIS)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Signal Processing and Information Security (ICSPIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSPIS.2018.8642721","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper proposes an algorithm for autonomous building detection in remote sensing images. The basis of the algorithm relies on the fact that each channel in RGB color space conveys different information. Furthermore, region properties and Principal Component Analysis (PCA) are used to distinguish between buildings and other regions in order to reduce false positive cases. The images used to test the proposed algorithm were obtained from DubaiSat-2, which offers multispectral images with 1-m accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于区域属性和PCA的自主建筑检测
提出了一种基于遥感图像的建筑物自主检测算法。该算法的基础依赖于RGB色彩空间中每个通道传递不同信息的事实。此外,利用区域属性和主成分分析(PCA)来区分建筑物和其他区域,以减少误报情况。用于测试该算法的图像来自DubaiSat-2,该卫星提供精度为1米的多光谱图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Implementing a performant security control for Industrial Ethernet Hindrances in the Fitness Landscape and Remedies to Achieve Optimization Low Complexity Receivers for Massive MIMO Cloud Radio Access Systems Using Virtual Agent for Facilitating Online Questionnaire Surveys Autonomous Building Detection Using Region Properties and PCA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1