Real-Time 3D Arm Motion Tracking Using the 6-axis IMU Sensor of a Smartwatch

Wenchuan Wei, Keiko Kurita, Jilong Kuang, A. Gao
{"title":"Real-Time 3D Arm Motion Tracking Using the 6-axis IMU Sensor of a Smartwatch","authors":"Wenchuan Wei, Keiko Kurita, Jilong Kuang, A. Gao","doi":"10.1109/BSN51625.2021.9507012","DOIUrl":null,"url":null,"abstract":"Inertial measurement unit (IMU) sensors are widely used in motion tracking for various applications, e.g., virtual physical therapy and fitness training. Traditional IMU-based motion tracking systems use 9-axis IMU sensors that include an accelerometer, gyroscope, and magnetometer. The magnetometer is essential to correct the yaw drift in orientation estimation. However, its magnetic field measurement is often disturbed by the ferromagnetic materials in the environment and requires frequent calibration. Moreover, most IMU-based systems require multiple IMU sensors to track the body motion and are not convenient for use. In this paper, we propose a novel approach that uses a single 6-axis IMU sensor of a consumer smartwatch without any magnetometer to track the user's 3D arm motion in real time. We use a recurrent neural network (RNN) model to estimate the 3D positions of both the wrist and the elbow from the noisy IMU data. Compared with the state-of-the-art approaches that use either the 9-axis IMU sensor or the combination of a 6-axis IMU and an extra device, our proposed approach significantly improves the usability and potential for pervasiveness by not requiring a magnetometer or any extra device, while achieving comparable results.","PeriodicalId":181520,"journal":{"name":"2021 IEEE 17th International Conference on Wearable and Implantable Body Sensor Networks (BSN)","volume":"109 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 17th International Conference on Wearable and Implantable Body Sensor Networks (BSN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BSN51625.2021.9507012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Inertial measurement unit (IMU) sensors are widely used in motion tracking for various applications, e.g., virtual physical therapy and fitness training. Traditional IMU-based motion tracking systems use 9-axis IMU sensors that include an accelerometer, gyroscope, and magnetometer. The magnetometer is essential to correct the yaw drift in orientation estimation. However, its magnetic field measurement is often disturbed by the ferromagnetic materials in the environment and requires frequent calibration. Moreover, most IMU-based systems require multiple IMU sensors to track the body motion and are not convenient for use. In this paper, we propose a novel approach that uses a single 6-axis IMU sensor of a consumer smartwatch without any magnetometer to track the user's 3D arm motion in real time. We use a recurrent neural network (RNN) model to estimate the 3D positions of both the wrist and the elbow from the noisy IMU data. Compared with the state-of-the-art approaches that use either the 9-axis IMU sensor or the combination of a 6-axis IMU and an extra device, our proposed approach significantly improves the usability and potential for pervasiveness by not requiring a magnetometer or any extra device, while achieving comparable results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于智能手表6轴IMU传感器的实时3D手臂运动跟踪
惯性测量单元(IMU)传感器广泛应用于各种运动跟踪应用,例如虚拟物理治疗和健身训练。传统的基于IMU的运动跟踪系统使用9轴IMU传感器,包括加速度计、陀螺仪和磁力计。在方位估计中,磁强计是纠正偏航漂移的关键。但其磁场测量经常受到环境中铁磁性物质的干扰,需要频繁校准。此外,大多数基于IMU的系统需要多个IMU传感器来跟踪身体运动,使用起来不方便。在本文中,我们提出了一种新颖的方法,该方法使用消费类智能手表的单个6轴IMU传感器,而不使用任何磁力计来实时跟踪用户的3D手臂运动。我们使用递归神经网络(RNN)模型从有噪声的IMU数据中估计手腕和肘部的三维位置。与使用9轴IMU传感器或6轴IMU与额外设备的组合的最先进方法相比,我们提出的方法通过不需要磁力计或任何额外设备,显着提高了可用性和普及潜力,同时取得了可比的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Wavelet-based analysis of gait for automated frailty assessment with a wrist-worn device Heart Rate Detection using a Contactless Bed Sensor: A Comparative Study of Wavelet Methods Deep 3D Body Landmarks Estimation for Smart Garments Design Real-Time 3D Arm Motion Tracking Using the 6-axis IMU Sensor of a Smartwatch Multi-Objective Optimisation for SSVEP Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1