Multi-Objective Optimisation for SSVEP Detection

Yue Zhang, Zhiqiang Zhang, Shengquan Xie
{"title":"Multi-Objective Optimisation for SSVEP Detection","authors":"Yue Zhang, Zhiqiang Zhang, Shengquan Xie","doi":"10.1109/BSN51625.2021.9507041","DOIUrl":null,"url":null,"abstract":"Data-driven spatial filtering approaches have been widely used for steady-state visual evoked potentials (SSVEPs) detection toward the brain-computer interface (BCI). The existing methods tend to learn the spatial filter parameters for a certain stimulation frequency only using the training trials from the same stimulus, which may ignore the information from the other stimuli. In this paper, we propose a novel multi-objective optimisation-based spatial filtering method for enhancing SSVEP recognition. Spatial filters are defined via maximising the correlation among the training data from the same stimulus whilst minimising the correlation from different stimuli. We collected SSVEP signals using 16 electrodes from six healthy subjects at 4 different stimulation frequencies: 14Hz, 15Hz, 16Hz, and 17Hz. The experimental study was implemented, and our method can achieve an average recognition accuracy of 94.17%, which illustrates its effectiveness.","PeriodicalId":181520,"journal":{"name":"2021 IEEE 17th International Conference on Wearable and Implantable Body Sensor Networks (BSN)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 17th International Conference on Wearable and Implantable Body Sensor Networks (BSN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BSN51625.2021.9507041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Data-driven spatial filtering approaches have been widely used for steady-state visual evoked potentials (SSVEPs) detection toward the brain-computer interface (BCI). The existing methods tend to learn the spatial filter parameters for a certain stimulation frequency only using the training trials from the same stimulus, which may ignore the information from the other stimuli. In this paper, we propose a novel multi-objective optimisation-based spatial filtering method for enhancing SSVEP recognition. Spatial filters are defined via maximising the correlation among the training data from the same stimulus whilst minimising the correlation from different stimuli. We collected SSVEP signals using 16 electrodes from six healthy subjects at 4 different stimulation frequencies: 14Hz, 15Hz, 16Hz, and 17Hz. The experimental study was implemented, and our method can achieve an average recognition accuracy of 94.17%, which illustrates its effectiveness.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SSVEP检测的多目标优化
数据驱动的空间滤波方法已广泛应用于脑机接口稳态视觉诱发电位(SSVEPs)检测。现有的方法往往只使用同一刺激的训练试验来学习特定刺激频率下的空间滤波参数,而忽略了来自其他刺激的信息。本文提出了一种新的基于多目标优化的空间滤波方法来增强对SSVEP的识别。空间滤波器是通过最大化来自相同刺激的训练数据之间的相关性,同时最小化来自不同刺激的相关性来定义的。我们使用来自6名健康受试者的16个电极在4种不同的刺激频率(14Hz、15Hz、16Hz和17Hz)下收集SSVEP信号。实验结果表明,该方法的平均识别准确率为94.17%,证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Wavelet-based analysis of gait for automated frailty assessment with a wrist-worn device Heart Rate Detection using a Contactless Bed Sensor: A Comparative Study of Wavelet Methods Deep 3D Body Landmarks Estimation for Smart Garments Design Real-Time 3D Arm Motion Tracking Using the 6-axis IMU Sensor of a Smartwatch Multi-Objective Optimisation for SSVEP Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1