Data-driven Kernel Subspace Clustering with Local Manifold Preservation

Kunpeng Xu, Lifei Chen, Shengrui Wang
{"title":"Data-driven Kernel Subspace Clustering with Local Manifold Preservation","authors":"Kunpeng Xu, Lifei Chen, Shengrui Wang","doi":"10.1109/ICDMW58026.2022.00116","DOIUrl":null,"url":null,"abstract":"Kernel-based subspace clustering methods that can reveal the nonlinear structure of data are an emerging research topic. While advances have been made, existing methods suffer from one or both of the following shortcomings: (1) the predefined kernel determines their performance; (2) they may be vulnerable in arbitrary manifold subspace. In this paper, we propose a novel data-driven kernel subspace clustering model with local manifold preservation, named DKLM. Specifically, DKLM provides an explicit data-driven kernel learning strategy for learning kernel directly from the self-representation of data while satisfying the adaptive-weighting. Based on the kernel, DKLM allows preserving the local manifold structure of data through a kernel local manifold term in nonlinear space and encourages acquiring an affinity matrix with the optimal block diagonal. Various experiments on both synthetic data and real-world data demonstrate the effectiveness of our method.","PeriodicalId":146687,"journal":{"name":"2022 IEEE International Conference on Data Mining Workshops (ICDMW)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Data Mining Workshops (ICDMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW58026.2022.00116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Kernel-based subspace clustering methods that can reveal the nonlinear structure of data are an emerging research topic. While advances have been made, existing methods suffer from one or both of the following shortcomings: (1) the predefined kernel determines their performance; (2) they may be vulnerable in arbitrary manifold subspace. In this paper, we propose a novel data-driven kernel subspace clustering model with local manifold preservation, named DKLM. Specifically, DKLM provides an explicit data-driven kernel learning strategy for learning kernel directly from the self-representation of data while satisfying the adaptive-weighting. Based on the kernel, DKLM allows preserving the local manifold structure of data through a kernel local manifold term in nonlinear space and encourages acquiring an affinity matrix with the optimal block diagonal. Various experiments on both synthetic data and real-world data demonstrate the effectiveness of our method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有局部流形保存的数据驱动核子空间聚类
基于核的子空间聚类方法能够揭示数据的非线性结构,是一个新兴的研究课题。虽然取得了进步,但现有的方法存在以下一个或两个缺点:(1)预定义的内核决定了它们的性能;(2)它们在任意流形子空间中是脆弱的。本文提出了一种具有局部流形保持的数据驱动核子空间聚类模型,称为DKLM。具体来说,DKLM提供了一种明确的数据驱动核学习策略,在满足自适应加权的情况下,直接从数据的自表示中学习核。基于核,DKLM允许通过一个核局部流形项在非线性空间中保留数据的局部流形结构,并鼓励获取具有最优块对角线的亲和矩阵。各种合成数据和实际数据的实验证明了我们的方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Above Ground Biomass Estimation of a Cocoa Plantation using Machine Learning Backdoor Poisoning of Encrypted Traffic Classifiers Identifying Patterns of Vulnerability Incidence in Foundational Machine Learning Repositories on GitHub: An Unsupervised Graph Embedding Approach Data-driven Kernel Subspace Clustering with Local Manifold Preservation Persona-Based Conversational AI: State of the Art and Challenges
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1