{"title":"Persona-Based Conversational AI: State of the Art and Challenges","authors":"Junfeng Liu, Christopher T. Symons, R. Vatsavai","doi":"10.1109/ICDMW58026.2022.00129","DOIUrl":null,"url":null,"abstract":"Conversational AI has become an increasingly prominent and practical application of machine learning. How-ever, existing conversational AI techniques still suffer from var-ious limitations. One such limitation is a lack of well-developed methods for incorporating auxiliary information that could help a model understand conversational context better. In this paper, we explore how persona-based information could help improve the quality of response generation in conversations. First, we provide a literature review focusing on the current state-of-the-art methods that utilize persona information. We evaluate two strong baseline methods, the Ranking Profile Memory Network and the Poly-Encoder, on the NeurIPS ConvAI2 benchmark dataset. Our analysis elucidates the importance of incorporating persona information into conversational systems. Additionally, our study highlights several limitations with current state-of-the-art meth-ods and outlines challenges and future research directions for advancing personalized conversational AI technology.","PeriodicalId":146687,"journal":{"name":"2022 IEEE International Conference on Data Mining Workshops (ICDMW)","volume":"399 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Data Mining Workshops (ICDMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW58026.2022.00129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Conversational AI has become an increasingly prominent and practical application of machine learning. How-ever, existing conversational AI techniques still suffer from var-ious limitations. One such limitation is a lack of well-developed methods for incorporating auxiliary information that could help a model understand conversational context better. In this paper, we explore how persona-based information could help improve the quality of response generation in conversations. First, we provide a literature review focusing on the current state-of-the-art methods that utilize persona information. We evaluate two strong baseline methods, the Ranking Profile Memory Network and the Poly-Encoder, on the NeurIPS ConvAI2 benchmark dataset. Our analysis elucidates the importance of incorporating persona information into conversational systems. Additionally, our study highlights several limitations with current state-of-the-art meth-ods and outlines challenges and future research directions for advancing personalized conversational AI technology.