Persona-Based Conversational AI: State of the Art and Challenges

Junfeng Liu, Christopher T. Symons, R. Vatsavai
{"title":"Persona-Based Conversational AI: State of the Art and Challenges","authors":"Junfeng Liu, Christopher T. Symons, R. Vatsavai","doi":"10.1109/ICDMW58026.2022.00129","DOIUrl":null,"url":null,"abstract":"Conversational AI has become an increasingly prominent and practical application of machine learning. How-ever, existing conversational AI techniques still suffer from var-ious limitations. One such limitation is a lack of well-developed methods for incorporating auxiliary information that could help a model understand conversational context better. In this paper, we explore how persona-based information could help improve the quality of response generation in conversations. First, we provide a literature review focusing on the current state-of-the-art methods that utilize persona information. We evaluate two strong baseline methods, the Ranking Profile Memory Network and the Poly-Encoder, on the NeurIPS ConvAI2 benchmark dataset. Our analysis elucidates the importance of incorporating persona information into conversational systems. Additionally, our study highlights several limitations with current state-of-the-art meth-ods and outlines challenges and future research directions for advancing personalized conversational AI technology.","PeriodicalId":146687,"journal":{"name":"2022 IEEE International Conference on Data Mining Workshops (ICDMW)","volume":"399 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Data Mining Workshops (ICDMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW58026.2022.00129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Conversational AI has become an increasingly prominent and practical application of machine learning. How-ever, existing conversational AI techniques still suffer from var-ious limitations. One such limitation is a lack of well-developed methods for incorporating auxiliary information that could help a model understand conversational context better. In this paper, we explore how persona-based information could help improve the quality of response generation in conversations. First, we provide a literature review focusing on the current state-of-the-art methods that utilize persona information. We evaluate two strong baseline methods, the Ranking Profile Memory Network and the Poly-Encoder, on the NeurIPS ConvAI2 benchmark dataset. Our analysis elucidates the importance of incorporating persona information into conversational systems. Additionally, our study highlights several limitations with current state-of-the-art meth-ods and outlines challenges and future research directions for advancing personalized conversational AI technology.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于角色的会话AI:技术现状和挑战
会话式人工智能已经成为机器学习的一个日益突出和实用的应用。然而,现有的会话人工智能技术仍然受到各种限制。其中一个限制是缺乏成熟的方法来整合辅助信息,这些辅助信息可以帮助模型更好地理解会话上下文。在本文中,我们探讨了基于人物的信息如何帮助提高对话中响应生成的质量。首先,我们提供了一篇文献综述,重点介绍了目前最先进的利用人物角色信息的方法。我们在NeurIPS ConvAI2基准数据集上评估了两种强大的基线方法,rank Profile Memory Network和Poly-Encoder。我们的分析阐明了将角色信息整合到会话系统中的重要性。此外,我们的研究强调了当前最先进方法的几个局限性,并概述了推进个性化会话人工智能技术的挑战和未来研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Above Ground Biomass Estimation of a Cocoa Plantation using Machine Learning Backdoor Poisoning of Encrypted Traffic Classifiers Identifying Patterns of Vulnerability Incidence in Foundational Machine Learning Repositories on GitHub: An Unsupervised Graph Embedding Approach Data-driven Kernel Subspace Clustering with Local Manifold Preservation Persona-Based Conversational AI: State of the Art and Challenges
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1