Self-Sensing Composite Materials With Intelligent Fabrics

Federico Fabriani, G. Lanzara
{"title":"Self-Sensing Composite Materials With Intelligent Fabrics","authors":"Federico Fabriani, G. Lanzara","doi":"10.1115/smasis2019-5684","DOIUrl":null,"url":null,"abstract":"\n The excellent piezoelectric properties of Polyvinyl Fluoride (PVDF), its low cost, ease of workability and high chemical resistance, make it very useful to develop sensing devices for structural health monitoring applications (SHM). However, challenges occur when the devices need to be embedded into a hosting material or structure which could instead be damaged.\n In this study, the PVDF device is transformed into an ultralight and porous piezoelectric mat formed by ultra-long and randomly distributed micro fibers. The piezoelectric mat is embedded into a glass fiber (GF) composite by intercalating it with the GF layers during the lay-up process. This approach allows the realization of an intelligent composite that is capable to self-monitor its strain or vibrations during inservice life.","PeriodicalId":235262,"journal":{"name":"ASME 2019 Conference on Smart Materials, Adaptive Structures and Intelligent Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME 2019 Conference on Smart Materials, Adaptive Structures and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/smasis2019-5684","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The excellent piezoelectric properties of Polyvinyl Fluoride (PVDF), its low cost, ease of workability and high chemical resistance, make it very useful to develop sensing devices for structural health monitoring applications (SHM). However, challenges occur when the devices need to be embedded into a hosting material or structure which could instead be damaged. In this study, the PVDF device is transformed into an ultralight and porous piezoelectric mat formed by ultra-long and randomly distributed micro fibers. The piezoelectric mat is embedded into a glass fiber (GF) composite by intercalating it with the GF layers during the lay-up process. This approach allows the realization of an intelligent composite that is capable to self-monitor its strain or vibrations during inservice life.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有智能织物的自传感复合材料
聚乙烯烃氟化乙烯(PVDF)具有优异的压电性能、低成本、易加工性和高耐化学性,使其在结构健康监测(SHM)传感器件的开发中非常有用。然而,当设备需要嵌入到可能被损坏的承载材料或结构中时,就会出现挑战。在本研究中,将PVDF器件转化为由超长且随机分布的微纤维形成的超轻多孔压电垫。在铺层过程中,将压电垫嵌入到玻璃纤维(GF)复合材料中。这种方法可以实现智能复合材料,能够在使用寿命期间自我监测其应变或振动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Coupled Electro-Thermo-Mechanical Modeling of Shape Memory Polymers Design-Oriented Multifidelity Fluid Simulation Using Machine Learned Fidelity Mapping Self-Sensing Composite Materials With Intelligent Fabrics Developing a Smart Façade System Controller for Wind-Induced Vibration Mitigation in Tall Buildings Methodology for Minimizing Operational Influences of the Test Rig During Long-Term Investigations of SMA Wires
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1