Design, Modeling and Testing of Polysilicon Optothermal Actuators for Power Scavenging Wireless Microrobots

Francis R. Szabo, Paul E. Kladiti
{"title":"Design, Modeling and Testing of Polysilicon Optothermal Actuators for Power Scavenging Wireless Microrobots","authors":"Francis R. Szabo, Paul E. Kladiti","doi":"10.1109/ICMENS.2004.50","DOIUrl":null,"url":null,"abstract":"The biggest hurdle to be solved, in order to create autonomous Micro-Electro-Mechanical Systems (MEMS) microrobots, is generating power for their actuator engines. Most present actuators require orders of magnitude more power than is presently available from micropower sources. To enable smaller microrobots, this research investigated a simplified power concept that eliminates the need for on-board power supplies and control circuitry by using actuators powered wirelessly from the environment. The use of lasers to directly power micrometer scale silicon thermal actuators was explored. Optothermal actuators, intended for use on a small wirelessly propelled autonomous MEMS microrobot, were modeled, designed, fabricated and tested, using the PolyMUMPs silicon-metal chip fabrication process. A 760 µm by 710 µm prototype MEMS polysilicon-based microrobot, using optothermal actuators, was designed, fabricated and tested. Each of its parts was demonstrated to provide actuation using energy from an external laser. The optothermal actuators provided 2 µm of deflection to the microrobot drive shaft, with 60 mW of pulsed laser power. The results of these experiments demonstrated the validity of a new class of wireless polysilicon actuators for MEMS devices, which are not directly dependant on electrical power for actuation. The experiments also demonstrated a potentially viable design that could be used to propel the world’s smallest autonomous MEMS microrobot.","PeriodicalId":344661,"journal":{"name":"2004 International Conference on MEMS, NANO and Smart Systems (ICMENS'04)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2004 International Conference on MEMS, NANO and Smart Systems (ICMENS'04)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMENS.2004.50","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

The biggest hurdle to be solved, in order to create autonomous Micro-Electro-Mechanical Systems (MEMS) microrobots, is generating power for their actuator engines. Most present actuators require orders of magnitude more power than is presently available from micropower sources. To enable smaller microrobots, this research investigated a simplified power concept that eliminates the need for on-board power supplies and control circuitry by using actuators powered wirelessly from the environment. The use of lasers to directly power micrometer scale silicon thermal actuators was explored. Optothermal actuators, intended for use on a small wirelessly propelled autonomous MEMS microrobot, were modeled, designed, fabricated and tested, using the PolyMUMPs silicon-metal chip fabrication process. A 760 µm by 710 µm prototype MEMS polysilicon-based microrobot, using optothermal actuators, was designed, fabricated and tested. Each of its parts was demonstrated to provide actuation using energy from an external laser. The optothermal actuators provided 2 µm of deflection to the microrobot drive shaft, with 60 mW of pulsed laser power. The results of these experiments demonstrated the validity of a new class of wireless polysilicon actuators for MEMS devices, which are not directly dependant on electrical power for actuation. The experiments also demonstrated a potentially viable design that could be used to propel the world’s smallest autonomous MEMS microrobot.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
电力清除无线微型机器人多晶硅光热驱动器的设计、建模与测试
为了制造自主微机电系统(MEMS)微型机器人,需要解决的最大障碍是为它们的执行器引擎发电。目前大多数执行器需要的功率比目前可从微功率源获得的功率大几个数量级。为了实现更小的微型机器人,本研究研究了一种简化的电源概念,通过使用从环境中无线供电的致动器,消除了对车载电源和控制电路的需求。探讨了利用激光直接为微米级硅热致动器供电的方法。采用PolyMUMPs硅金属芯片制造工艺,对用于小型无线推进自主MEMS微型机器人的光热致动器进行了建模、设计、制造和测试。设计、制作并测试了一个760 μ m × 710 μ m的基于多晶硅的MEMS微机器人原型机,该机器人采用光热致动器。它的每个部分都被证明是使用外部激光的能量来提供驱动的。光热致动器为微型机器人驱动轴提供2µm的偏转,脉冲激光功率为60 mW。这些实验的结果证明了一种新型的无线多晶硅致动器的有效性,这种致动器不直接依赖于电力。实验还展示了一种潜在可行的设计,可用于推动世界上最小的自主MEMS微型机器人。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Molecular Imaging: A Convergence of Technologies Fabrications of Micro-Channel Device by Hot Emboss and Direct Bonding of PMMA Fiber Bragg Grating Sensing Systems Performance Improvement and Assessment Advanced MEMS and Integrated-Optic Components for Multifunctional Integrated Optical Micromachines Novel Tactile Sensors Manufactured by Carbon Microcoils
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1