The Brain function index as a depth of anesthesia indicator using complexity measures

R. Shalbaf, H. Behnam, H. J. Moghadam, A. Mehrnam, M. Sadaghiani
{"title":"The Brain function index as a depth of anesthesia indicator using complexity measures","authors":"R. Shalbaf, H. Behnam, H. J. Moghadam, A. Mehrnam, M. Sadaghiani","doi":"10.1109/SPC.2013.6735105","DOIUrl":null,"url":null,"abstract":"Monitoring depth of anesthesia using the Electroencephalogram (EEG) is a major ongoing challenge in anesthesia research. This paper offers a real-time method based on combination of permutation entropy and burst suppression pattern ratio to calculate an index, called Brain function index (BFI), to quantify the effect of anesthetic drug on brain activity quickly and accurately. Such a method implemented in the Saadat brain function assessment module (Saadat Co., Tehran, Iran). The BFI and commercial Bispectral index (BIS) are applied to EEG signals collected from 25 patients during general surgery. The results show that both BFI and BIS track the gross changes in EEG especially at high doses of anesthetics. However, the BFI index has significant advantages as; it has an open source algorithm and doesn't involve a complex mixture of three unrelated sub-indices; it is less sensitive to the noise embedded in the EEG signal and it considerably reduces computational complexity.","PeriodicalId":198247,"journal":{"name":"2013 IEEE Conference on Systems, Process & Control (ICSPC)","volume":"110 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Conference on Systems, Process & Control (ICSPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPC.2013.6735105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Monitoring depth of anesthesia using the Electroencephalogram (EEG) is a major ongoing challenge in anesthesia research. This paper offers a real-time method based on combination of permutation entropy and burst suppression pattern ratio to calculate an index, called Brain function index (BFI), to quantify the effect of anesthetic drug on brain activity quickly and accurately. Such a method implemented in the Saadat brain function assessment module (Saadat Co., Tehran, Iran). The BFI and commercial Bispectral index (BIS) are applied to EEG signals collected from 25 patients during general surgery. The results show that both BFI and BIS track the gross changes in EEG especially at high doses of anesthetics. However, the BFI index has significant advantages as; it has an open source algorithm and doesn't involve a complex mixture of three unrelated sub-indices; it is less sensitive to the noise embedded in the EEG signal and it considerably reduces computational complexity.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
以脑功能指数作为麻醉深度的复杂指标
利用脑电图监测麻醉深度是麻醉研究中的一个重大挑战。本文提出了一种基于排列熵和突发抑制模式比相结合的实时计算脑功能指数(BFI)的方法,以快速准确地量化麻醉药物对脑活动的影响。该方法在Saadat脑功能评估模块(Saadat Co.,德黑兰,伊朗)中实现。应用BFI和商业双谱指数(BIS)对25例普外科患者的脑电图信号进行分析。结果表明,在高剂量麻醉下,BFI和BIS均能追踪脑电图的大体变化。然而,BFI指数具有显著的优势:它有一个开源算法,不涉及三个不相关的子指数的复杂混合;它对嵌入在脑电信号中的噪声不太敏感,大大降低了计算复杂度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Adaptive intelligent spider robot A simple statistical analysis approach for Intrusion Detection System The Brain function index as a depth of anesthesia indicator using complexity measures Optimization of nth order square linear controller in the realm of describing function approach for nonlinear multivariable square system Performance analysis of wavelet transforms for leakage detection in long range pipeline networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1