Development of an Arduino-based automated household utility power monitoring system

Alan L. Vergara, Harreez M. Villaruz
{"title":"Development of an Arduino-based automated household utility power monitoring system","authors":"Alan L. Vergara, Harreez M. Villaruz","doi":"10.1109/HNICEM.2014.7016233","DOIUrl":null,"url":null,"abstract":"This work develops an automated household utility power monitoring system and data logging in real-time. It utilizes the Arduino Uno Rev3 Microcontroller board intended for use in conjunction with the ATmega328 chip. For monitoring these parameters, it will be connected to a current transformer through the current and voltage sensor circuit. The system will convert these raw data to digital input for data acquisition and will log these to an SD card by the SD/MMC shield module for data retention in case of power failures. The system is also equipped with DS1307 serial RTC (Real-Time Clock) chip which is responsible for providing real time clock and date needed in the data logging operation. Results and findings indicated that the device has indeed successfully performed its desired function as an automated household utility power monitoring system. As such it will display in real-time, the consumed average power in watt along with its price. This will serve as an assessment parameter in order to measure the acceptability, performance relative to functionality, and marketability of the accomplished technology.","PeriodicalId":309548,"journal":{"name":"2014 International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HNICEM.2014.7016233","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

This work develops an automated household utility power monitoring system and data logging in real-time. It utilizes the Arduino Uno Rev3 Microcontroller board intended for use in conjunction with the ATmega328 chip. For monitoring these parameters, it will be connected to a current transformer through the current and voltage sensor circuit. The system will convert these raw data to digital input for data acquisition and will log these to an SD card by the SD/MMC shield module for data retention in case of power failures. The system is also equipped with DS1307 serial RTC (Real-Time Clock) chip which is responsible for providing real time clock and date needed in the data logging operation. Results and findings indicated that the device has indeed successfully performed its desired function as an automated household utility power monitoring system. As such it will display in real-time, the consumed average power in watt along with its price. This will serve as an assessment parameter in order to measure the acceptability, performance relative to functionality, and marketability of the accomplished technology.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于arduino的自动化家庭公用事业电力监控系统的开发
本课题开发了一个自动化的家庭公用事业电力监测系统和实时数据记录系统。它利用Arduino Uno Rev3微控制器板,用于与ATmega328芯片一起使用。为了监测这些参数,它将通过电流和电压传感器电路连接到电流互感器上。系统将这些原始数据转换为数字输入进行数据采集,并通过SD/MMC屏蔽模块将这些数据记录到SD卡上,以便在电源故障时保留数据。系统还配备了DS1307串行RTC(实时时钟)芯片,负责提供数据记录操作所需的实时时钟和日期。结果和发现表明,该装置确实成功地实现了其作为自动化家庭公用事业电力监测系统的预期功能。因此,它将实时显示,消耗的平均功率瓦特以及它的价格。这将作为评估参数,以度量完成的技术的可接受性、相对于功能的性能和可销售性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Visual surveying control of an autonomous underwater vehicle Sensor fusion for localization, mapping and navigation in an indoor environment Determination of optimum placement of the liquid metal antenna design embedded in concrete beam prototype under center — Point loading test Prolonged distraction testing game implemented with ImpactJS HTML5, Gamepad and Neurosky Net energy analysis of Jatropha press-cake utilization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1