{"title":"The Use of Dynamic n-Gram to Enhance TF-IDF Features Extraction for Bahasa Indonesia Cyberbullying Classification","authors":"Yudi Setiawan, N. Maulidevi, K. Surendro","doi":"10.1145/3587828.3587858","DOIUrl":null,"url":null,"abstract":"Cyberbullying detection in a sentence or utterance has challenges due to syntactic and meaning variations (lexical). Term Frequency-Inverse Document Frequency (TF-IDF) carries out textual feature extraction to produce candidates thematically based on word occurrence statistics. However, these candidates are generated without considering a term relationship between constituent elements in the parsing language syntax. This study discusses a TF-IDF feature extraction model using the n-Gram approach to produce candidate feature selection based on a specified term relationship. Thresholding applications for the formation of dynamic n-Gram segmentation were also discussed. Furthermore, the dynamic n-Gram model in TF-IDF feature extraction can be used in cyberbullying classification to overcome variations in syntax and meaning of sentences/speech from Bahasa Indonesia.","PeriodicalId":340917,"journal":{"name":"Proceedings of the 2023 12th International Conference on Software and Computer Applications","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2023 12th International Conference on Software and Computer Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3587828.3587858","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Cyberbullying detection in a sentence or utterance has challenges due to syntactic and meaning variations (lexical). Term Frequency-Inverse Document Frequency (TF-IDF) carries out textual feature extraction to produce candidates thematically based on word occurrence statistics. However, these candidates are generated without considering a term relationship between constituent elements in the parsing language syntax. This study discusses a TF-IDF feature extraction model using the n-Gram approach to produce candidate feature selection based on a specified term relationship. Thresholding applications for the formation of dynamic n-Gram segmentation were also discussed. Furthermore, the dynamic n-Gram model in TF-IDF feature extraction can be used in cyberbullying classification to overcome variations in syntax and meaning of sentences/speech from Bahasa Indonesia.