S-functions behavioral model order reduction based on narrowband modulated large-signal network analyzer measurements

M. Myslinski, F. Verbeyst, M. vanden Bossche, D. Schreurs
{"title":"S-functions behavioral model order reduction based on narrowband modulated large-signal network analyzer measurements","authors":"M. Myslinski, F. Verbeyst, M. vanden Bossche, D. Schreurs","doi":"10.1109/ARFTG.2010.5496321","DOIUrl":null,"url":null,"abstract":"In this paper we report for the first time on order reduction applied to S-functions behavioral models. The most dominant model parameters are selected based on the relative uncertainty of their estimated values evaluated against a threshold value. The selection procedure is performed on the same measurement data that is used to extract the model and obtained using a large-signal network analyzer. High level of model order reduction, achieved without any substantial loss of the prediction accuracy, is demonstrated on S-functions extracted for a packaged pHEMT device.","PeriodicalId":221794,"journal":{"name":"75th ARFTG Microwave Measurement Conference","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"75th ARFTG Microwave Measurement Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ARFTG.2010.5496321","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

In this paper we report for the first time on order reduction applied to S-functions behavioral models. The most dominant model parameters are selected based on the relative uncertainty of their estimated values evaluated against a threshold value. The selection procedure is performed on the same measurement data that is used to extract the model and obtained using a large-signal network analyzer. High level of model order reduction, achieved without any substantial loss of the prediction accuracy, is demonstrated on S-functions extracted for a packaged pHEMT device.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于窄带调制大信号网络分析仪测量的s函数行为模型降阶
本文首次报道了将降阶应用于s函数行为模型的方法。最主要的模型参数是根据它们的估定值相对于阈值的不确定性来选择的。选择过程是在使用大信号网络分析仪获得的用于提取模型的相同测量数据上执行的。在为封装的pHEMT设备提取的s函数上证明了高水平的模型阶数降低,而没有任何实质性的预测精度损失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A VNA based broadband load-pull for non-parametric 2-port Best Linear Approximation modeling S-functions behavioral model order reduction based on narrowband modulated large-signal network analyzer measurements Analysis of phase noise effect on microwave attenuation precision measurement using a heterodyne receiver Some effects of error term interpolation on network analyzer uncertainties Traceable calibration of Vector Signal Analyzers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1