Multi-Channel MHLF: LSTM-FCN using MACD-Histogram with Multi-Channel Input for Time Series Classification

Shuichi Hashida, Keiichi Tamura
{"title":"Multi-Channel MHLF: LSTM-FCN using MACD-Histogram with Multi-Channel Input for Time Series Classification","authors":"Shuichi Hashida, Keiichi Tamura","doi":"10.1109/IWCIA47330.2019.8955030","DOIUrl":null,"url":null,"abstract":"Time series classification is an important task for the identification of a person, weather, and motion, among others. In this study, the deep learning-based model is used for classification. In many research works, the deep learning-based time series classification has been reported to demonstrate a high performance. In particular, the LSTM-FCN model is a deep learning-based model, which shows the highest performance for time series classification. The proposed model is based on LSTM-FCN and its input consists of a multi-channel time series including the time series data and their MACD-histogram. In the experiments, the proposed model is evaluated using the defacto standard benchmark dataset, namely the UCR time series classification archive. The results show that the proposed model has higher performance than the existing models.","PeriodicalId":139434,"journal":{"name":"2019 IEEE 11th International Workshop on Computational Intelligence and Applications (IWCIA)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 11th International Workshop on Computational Intelligence and Applications (IWCIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWCIA47330.2019.8955030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Time series classification is an important task for the identification of a person, weather, and motion, among others. In this study, the deep learning-based model is used for classification. In many research works, the deep learning-based time series classification has been reported to demonstrate a high performance. In particular, the LSTM-FCN model is a deep learning-based model, which shows the highest performance for time series classification. The proposed model is based on LSTM-FCN and its input consists of a multi-channel time series including the time series data and their MACD-histogram. In the experiments, the proposed model is evaluated using the defacto standard benchmark dataset, namely the UCR time series classification archive. The results show that the proposed model has higher performance than the existing models.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多通道mmhf:基于macd直方图的LSTM-FCN多通道时间序列分类
时间序列分类是识别人物、天气和运动等的重要任务。在本研究中,基于深度学习的模型被用于分类。在许多研究工作中,基于深度学习的时间序列分类已经被报道出了很高的性能。其中,LSTM-FCN模型是一种基于深度学习的模型,在时间序列分类中表现出最高的性能。该模型基于LSTM-FCN,其输入由多通道时间序列组成,包括时间序列数据及其macd直方图。在实验中,使用事实上的标准基准数据集(即UCR时间序列分类存档)对所提出的模型进行了评估。结果表明,该模型比现有模型具有更高的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Acquiring Multiagent Cooperative Behavior in the RoboCup Soccer Simulation Neurosynaptic Computational Elements for Adaptive Transient Synchrony: Biophysical Accuracy versus Hardware Complexity [Front matter] Multi-Channel MHLF: LSTM-FCN using MACD-Histogram with Multi-Channel Input for Time Series Classification Using Label Information in a Genetic Programming Based Method for Acquiring Block Preserving Outerplanar Graph Patterns with Wildcards
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1