{"title":"Multi-Channel MHLF: LSTM-FCN using MACD-Histogram with Multi-Channel Input for Time Series Classification","authors":"Shuichi Hashida, Keiichi Tamura","doi":"10.1109/IWCIA47330.2019.8955030","DOIUrl":null,"url":null,"abstract":"Time series classification is an important task for the identification of a person, weather, and motion, among others. In this study, the deep learning-based model is used for classification. In many research works, the deep learning-based time series classification has been reported to demonstrate a high performance. In particular, the LSTM-FCN model is a deep learning-based model, which shows the highest performance for time series classification. The proposed model is based on LSTM-FCN and its input consists of a multi-channel time series including the time series data and their MACD-histogram. In the experiments, the proposed model is evaluated using the defacto standard benchmark dataset, namely the UCR time series classification archive. The results show that the proposed model has higher performance than the existing models.","PeriodicalId":139434,"journal":{"name":"2019 IEEE 11th International Workshop on Computational Intelligence and Applications (IWCIA)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 11th International Workshop on Computational Intelligence and Applications (IWCIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWCIA47330.2019.8955030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
Time series classification is an important task for the identification of a person, weather, and motion, among others. In this study, the deep learning-based model is used for classification. In many research works, the deep learning-based time series classification has been reported to demonstrate a high performance. In particular, the LSTM-FCN model is a deep learning-based model, which shows the highest performance for time series classification. The proposed model is based on LSTM-FCN and its input consists of a multi-channel time series including the time series data and their MACD-histogram. In the experiments, the proposed model is evaluated using the defacto standard benchmark dataset, namely the UCR time series classification archive. The results show that the proposed model has higher performance than the existing models.