Feature Based Performance Evaluation of Support Vector Machine on Binary Classification

Shivani Sharma, S. Srivastava
{"title":"Feature Based Performance Evaluation of Support Vector Machine on Binary Classification","authors":"Shivani Sharma, S. Srivastava","doi":"10.1109/CICT.2016.41","DOIUrl":null,"url":null,"abstract":"Classification is a challenging phenomenon. Text classification uses terms as features which can be grouped to vote for belongingness of a class. This paper explores the performance of Support Vector Machine (SVM) on variation of text features. Empirical results support the findings. The reported result shows significant degradation in SVM classifier as we reduce features from 100 to 50 and then to 25. Short text messages (tweets) are used as a data set and balanced binary classes are used with 841 tweets each. We have used radial basis function as a kernel parameter. TP Rate, FP Rate, Precision, Recall, F Measure are used as a measure of performance evaluator. Confusion matrix is used for quick review of classifier and 10 fold cross validation is used for estimation of prediction model.","PeriodicalId":118509,"journal":{"name":"2016 Second International Conference on Computational Intelligence & Communication Technology (CICT)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Second International Conference on Computational Intelligence & Communication Technology (CICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CICT.2016.41","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Classification is a challenging phenomenon. Text classification uses terms as features which can be grouped to vote for belongingness of a class. This paper explores the performance of Support Vector Machine (SVM) on variation of text features. Empirical results support the findings. The reported result shows significant degradation in SVM classifier as we reduce features from 100 to 50 and then to 25. Short text messages (tweets) are used as a data set and balanced binary classes are used with 841 tweets each. We have used radial basis function as a kernel parameter. TP Rate, FP Rate, Precision, Recall, F Measure are used as a measure of performance evaluator. Confusion matrix is used for quick review of classifier and 10 fold cross validation is used for estimation of prediction model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于特征的支持向量机二值分类性能评价
分类是一个具有挑战性的现象。文本分类使用术语作为特征,可以将其分组以投票决定类的归属。本文探讨了支持向量机(SVM)在文本特征变化方面的性能。实证结果支持了这一发现。报告的结果显示,当我们将特征从100个减少到50个,然后再减少到25个时,SVM分类器显着退化。使用短文本消息(tweet)作为数据集,并使用平衡二进制类,每个类有841条tweet。我们使用径向基函数作为核参数。TP率,FP率,精度,召回率,F测量被用作性能评估器的衡量标准。使用混淆矩阵对分类器进行快速检查,使用10次交叉验证对预测模型进行估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Sketch Based Image Retrieval Using Watershed Transformation Modified ZRP to Identify Cooperative Attacks Short Term Load Forecasting Using ANN and Multiple Linear Regression Prediction of Carbon Stock Available in Forest Using Naive Bayes Approach CAD for the Detection of Fetal Electrocardiogram through Neuro-Fuzzy Logic and Wavelets Systems for Telemetry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1