Short Term Load Forecasting Using ANN and Multiple Linear Regression

Sharad Kumar, Shashank Mishra, Shashank Gupta
{"title":"Short Term Load Forecasting Using ANN and Multiple Linear Regression","authors":"Sharad Kumar, Shashank Mishra, Shashank Gupta","doi":"10.1109/CICT.2016.44","DOIUrl":null,"url":null,"abstract":"Energy demand forecasting is of great importance in the management of power systems. In this paper artificial neural network technique (ANN) and multiple linear regressions method is used for forecasting the load curve. Algorithms using these techniques have been programmed using MATLAB and applied to the case study. The efficiency of both the model is determined from the load curve and the load is predicted as a testing sample.","PeriodicalId":118509,"journal":{"name":"2016 Second International Conference on Computational Intelligence & Communication Technology (CICT)","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Second International Conference on Computational Intelligence & Communication Technology (CICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CICT.2016.44","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 38

Abstract

Energy demand forecasting is of great importance in the management of power systems. In this paper artificial neural network technique (ANN) and multiple linear regressions method is used for forecasting the load curve. Algorithms using these techniques have been programmed using MATLAB and applied to the case study. The efficiency of both the model is determined from the load curve and the load is predicted as a testing sample.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于神经网络和多元线性回归的短期负荷预测
能源需求预测在电力系统管理中具有重要意义。本文采用人工神经网络技术和多元线性回归方法对负荷曲线进行预测。使用这些技术的算法已经用MATLAB编程并应用于案例研究。两种模型的效率均由负荷曲线确定,并以负荷作为测试样本进行预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Sketch Based Image Retrieval Using Watershed Transformation Modified ZRP to Identify Cooperative Attacks Short Term Load Forecasting Using ANN and Multiple Linear Regression Prediction of Carbon Stock Available in Forest Using Naive Bayes Approach CAD for the Detection of Fetal Electrocardiogram through Neuro-Fuzzy Logic and Wavelets Systems for Telemetry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1