A task allocation method for heterogeneous multi-core system based on genetic algorithm

Juan Fang, Mengxuan Wang, Mingxia Gao, Jianhua Wei
{"title":"A task allocation method for heterogeneous multi-core system based on genetic algorithm","authors":"Juan Fang, Mengxuan Wang, Mingxia Gao, Jianhua Wei","doi":"10.1109/ICSESS.2017.8342896","DOIUrl":null,"url":null,"abstract":"Heterogeneous multi-core platforms are increasingly prevalent due to perceived superior performance over homogeneous systems. In order to maximize performance, each task needs to be mapped to the most appropriate processor. This paper implements a task allocation method based on genetic algorithm. The genetic algorithm is used to sample the application load feature in the task scheduling time slice, and its complicated iterative process is distributed to the following multiple scheduling sampling periods to select the core which complies with its calculation characteristic for each task. Experimental results demonstrate that the algorithm can effectively improve the system performance, compared with the built-in task scheduling mechanism of Linux 2.6 kernel.","PeriodicalId":179815,"journal":{"name":"2017 8th IEEE International Conference on Software Engineering and Service Science (ICSESS)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 8th IEEE International Conference on Software Engineering and Service Science (ICSESS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSESS.2017.8342896","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Heterogeneous multi-core platforms are increasingly prevalent due to perceived superior performance over homogeneous systems. In order to maximize performance, each task needs to be mapped to the most appropriate processor. This paper implements a task allocation method based on genetic algorithm. The genetic algorithm is used to sample the application load feature in the task scheduling time slice, and its complicated iterative process is distributed to the following multiple scheduling sampling periods to select the core which complies with its calculation characteristic for each task. Experimental results demonstrate that the algorithm can effectively improve the system performance, compared with the built-in task scheduling mechanism of Linux 2.6 kernel.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于遗传算法的异构多核系统任务分配方法
异构多核平台越来越普遍,因为它们的性能优于同构系统。为了使性能最大化,每个任务都需要映射到最合适的处理器。本文实现了一种基于遗传算法的任务分配方法。采用遗传算法对任务调度时间片中的应用负载特征进行采样,将其复杂的迭代过程分配到后续多个调度采样周期,为每个任务选择符合其计算特征的核心。实验结果表明,与Linux 2.6内核内置的任务调度机制相比,该算法可以有效地提高系统性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Critical analysis of feature model evolution A key technology survey and summary of dynamic network visualization Soft decision strategy design for signal demodulation in IEEE 802.11 protocol suite based wireless communication process A prediction method based on improved ridge regression SuperedgeRank algorithm and its application for core technology identification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1