Zhengqi Xu, Yixuan Cao, Rongyu Cao, Guoxiang Li, Xuanqiang Liu, Yan Pang, Yangbin Wang, Jianfei Zhang, Allie Cheung, Matthew Tam, Lukas Petrikas, Ping Luo
{"title":"Jura","authors":"Zhengqi Xu, Yixuan Cao, Rongyu Cao, Guoxiang Li, Xuanqiang Liu, Yan Pang, Yangbin Wang, Jianfei Zhang, Allie Cheung, Matthew Tam, Lukas Petrikas, Ping Luo","doi":"10.1145/3459637.3481929","DOIUrl":null,"url":null,"abstract":"The initial public offering (IPO) market in Hong Kong is consistently one of the largest in the world. As part of its regulatory responsibilities, Hong Kong Exchanges and Clearing Limited (HKEX) reviews annual reports published by listed companies (issuers). The number of issuers has grown at a fast pace, reaching 2,538 as the end of 2020. This poses a challenge for manually reviewing these annual reports against the many diverse regulatory obligations (listing rules). We propose a system named Jura to improve the efficiency of annual report reviewing with the help of machine learning methods. This system checks the compliance of an issuer's published information against listing rules in four steps: panoptic document recognition, relevant passage location, fine-grained information extraction, and compliance assessment. This paper introduces in detail the passage location step, how it is critical for speeding up compliance assessment, and the various challenges faced. We argue that although a passage is a relatively independent unit, it needs to be combined with document structure and contextual information to accurately locate the relevant passages. With the help of Jura, HKEX reports saving 80% of the time on reviewing issuers' annual reports.","PeriodicalId":405296,"journal":{"name":"Proceedings of the 30th ACM International Conference on Information & Knowledge Management","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 30th ACM International Conference on Information & Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3459637.3481929","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
The initial public offering (IPO) market in Hong Kong is consistently one of the largest in the world. As part of its regulatory responsibilities, Hong Kong Exchanges and Clearing Limited (HKEX) reviews annual reports published by listed companies (issuers). The number of issuers has grown at a fast pace, reaching 2,538 as the end of 2020. This poses a challenge for manually reviewing these annual reports against the many diverse regulatory obligations (listing rules). We propose a system named Jura to improve the efficiency of annual report reviewing with the help of machine learning methods. This system checks the compliance of an issuer's published information against listing rules in four steps: panoptic document recognition, relevant passage location, fine-grained information extraction, and compliance assessment. This paper introduces in detail the passage location step, how it is critical for speeding up compliance assessment, and the various challenges faced. We argue that although a passage is a relatively independent unit, it needs to be combined with document structure and contextual information to accurately locate the relevant passages. With the help of Jura, HKEX reports saving 80% of the time on reviewing issuers' annual reports.