VMAF Based Rate-Distortion Optimization for Video Coding

Sai Deng, Jingning Han, Yaowu Xu
{"title":"VMAF Based Rate-Distortion Optimization for Video Coding","authors":"Sai Deng, Jingning Han, Yaowu Xu","doi":"10.1109/MMSP48831.2020.9287114","DOIUrl":null,"url":null,"abstract":"Video Multi-method Assessment Fusion (VMAF) is a machine-learning based video quality metric. It is experimentally shown to provide higher correlation with human visual system as compared to conventional metrics like peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM) in many scenarios and has drawn considerable interest as an alternative metric to evaluate the perceptual quality. This work proposes a systematic approach to improve the video compression performance in VMAF. It is composed of multiple components including a pre-processing stage with a complement automatic filter parameter selection, and a modified rate-distortion optimization framework tailored for VMAF metric. The proposed scheme achieves on average 37% BD-rate reduction in VMAF, as compared to conventional video codec optimized for PSNR.","PeriodicalId":188283,"journal":{"name":"2020 IEEE 22nd International Workshop on Multimedia Signal Processing (MMSP)","volume":"88 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 22nd International Workshop on Multimedia Signal Processing (MMSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMSP48831.2020.9287114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

Video Multi-method Assessment Fusion (VMAF) is a machine-learning based video quality metric. It is experimentally shown to provide higher correlation with human visual system as compared to conventional metrics like peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM) in many scenarios and has drawn considerable interest as an alternative metric to evaluate the perceptual quality. This work proposes a systematic approach to improve the video compression performance in VMAF. It is composed of multiple components including a pre-processing stage with a complement automatic filter parameter selection, and a modified rate-distortion optimization framework tailored for VMAF metric. The proposed scheme achieves on average 37% BD-rate reduction in VMAF, as compared to conventional video codec optimized for PSNR.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于VMAF的视频编码率失真优化
视频多方法评估融合(VMAF)是一种基于机器学习的视频质量度量。实验表明,在许多情况下,与峰值信噪比(PSNR)和结构相似性指数(SSIM)等传统指标相比,它与人类视觉系统提供了更高的相关性,并且作为评估感知质量的替代指标引起了相当大的兴趣。本文提出了一种改进VMAF视频压缩性能的系统方法。它由多个部分组成,包括具有互补自动滤波参数选择的预处理阶段,以及针对VMAF度量量身定制的改进的率失真优化框架。与针对PSNR优化的传统视频编解码器相比,该方案在VMAF中平均降低了37%的bd速率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Leveraging Active Perception for Improving Embedding-based Deep Face Recognition Subjective Test Dataset and Meta-data-based Models for 360° Streaming Video Quality The Suitability of Texture Vibrations Based on Visually Perceived Virtual Textures in Bimodal and Trimodal Conditions DEMI: Deep Video Quality Estimation Model using Perceptual Video Quality Dimensions Learned BRIEF – transferring the knowledge from hand-crafted to learning-based descriptors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1