The realization of quantum complex-valued backpropagation neural network in pattern recognition problem

J. Mitrpanont, A. Srisuphab
{"title":"The realization of quantum complex-valued backpropagation neural network in pattern recognition problem","authors":"J. Mitrpanont, A. Srisuphab","doi":"10.1109/ICONIP.2002.1202213","DOIUrl":null,"url":null,"abstract":"The paper presents the approach of the quantum complex-valued backpropagation neural network or QCBPN. The challenge of our research is the expected results from the development of the quantum neural network using complex-valued backpropagation learning algorithm to solve classification problems. The concept of QCBPN emerged from the quantum circuit neural network research and the complex-valued backpropagation algorithm. We found that complex value and the quantum states share some natural representation suitable for the parallel computation. The quantum circuit neural network provides a qubit-like neuron model based on quantum mechanics with quantum backpropagation-learning rule, while the complex-valued backpropagation algorithm modifies standard backpropagation algorithm to learn complex number pattern in a natural way. The quantum complex-valued neuron model and the QCBPN learning algorithm are described. Finally, the realization of the QCBPN is exploited with a simple pattern recognition problem.","PeriodicalId":146553,"journal":{"name":"Proceedings of the 9th International Conference on Neural Information Processing, 2002. ICONIP '02.","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 9th International Conference on Neural Information Processing, 2002. ICONIP '02.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICONIP.2002.1202213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

Abstract

The paper presents the approach of the quantum complex-valued backpropagation neural network or QCBPN. The challenge of our research is the expected results from the development of the quantum neural network using complex-valued backpropagation learning algorithm to solve classification problems. The concept of QCBPN emerged from the quantum circuit neural network research and the complex-valued backpropagation algorithm. We found that complex value and the quantum states share some natural representation suitable for the parallel computation. The quantum circuit neural network provides a qubit-like neuron model based on quantum mechanics with quantum backpropagation-learning rule, while the complex-valued backpropagation algorithm modifies standard backpropagation algorithm to learn complex number pattern in a natural way. The quantum complex-valued neuron model and the QCBPN learning algorithm are described. Finally, the realization of the QCBPN is exploited with a simple pattern recognition problem.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
量子复值反向传播神经网络在模式识别问题中的实现
本文提出了量子复值反向传播神经网络(QCBPN)的方法。我们研究的挑战是量子神经网络发展的预期结果,使用复值反向传播学习算法来解决分类问题。QCBPN的概念来源于量子电路神经网络的研究和复值反向传播算法。我们发现复值和量子态具有一些适合并行计算的自然表示。量子电路神经网络提供了基于量子力学的类量子比特神经元模型,具有量子反向传播学习规则,复值反向传播算法对标准反向传播算法进行了修改,以自然的方式学习复数模式。介绍了量子复值神经元模型和QCBPN学习算法。最后,通过一个简单的模式识别问题来实现QCBPN。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hardware neuron models with CMOS for auditory neural networks Extracting latent structures in numerical classification: an investigation using two factor models An application of a progressive neural network technique in the identification of suspension properties of tracked vehicles Discussions of neural network solvers for inverse optimization problems Link between energy and computation in a physical model of Hopfield network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1