{"title":"The realization of quantum complex-valued backpropagation neural network in pattern recognition problem","authors":"J. Mitrpanont, A. Srisuphab","doi":"10.1109/ICONIP.2002.1202213","DOIUrl":null,"url":null,"abstract":"The paper presents the approach of the quantum complex-valued backpropagation neural network or QCBPN. The challenge of our research is the expected results from the development of the quantum neural network using complex-valued backpropagation learning algorithm to solve classification problems. The concept of QCBPN emerged from the quantum circuit neural network research and the complex-valued backpropagation algorithm. We found that complex value and the quantum states share some natural representation suitable for the parallel computation. The quantum circuit neural network provides a qubit-like neuron model based on quantum mechanics with quantum backpropagation-learning rule, while the complex-valued backpropagation algorithm modifies standard backpropagation algorithm to learn complex number pattern in a natural way. The quantum complex-valued neuron model and the QCBPN learning algorithm are described. Finally, the realization of the QCBPN is exploited with a simple pattern recognition problem.","PeriodicalId":146553,"journal":{"name":"Proceedings of the 9th International Conference on Neural Information Processing, 2002. ICONIP '02.","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 9th International Conference on Neural Information Processing, 2002. ICONIP '02.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICONIP.2002.1202213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25
Abstract
The paper presents the approach of the quantum complex-valued backpropagation neural network or QCBPN. The challenge of our research is the expected results from the development of the quantum neural network using complex-valued backpropagation learning algorithm to solve classification problems. The concept of QCBPN emerged from the quantum circuit neural network research and the complex-valued backpropagation algorithm. We found that complex value and the quantum states share some natural representation suitable for the parallel computation. The quantum circuit neural network provides a qubit-like neuron model based on quantum mechanics with quantum backpropagation-learning rule, while the complex-valued backpropagation algorithm modifies standard backpropagation algorithm to learn complex number pattern in a natural way. The quantum complex-valued neuron model and the QCBPN learning algorithm are described. Finally, the realization of the QCBPN is exploited with a simple pattern recognition problem.