Enabling antenna design with nano-magnetic materials using machine learning

Carmine Gianfagna, M. Swaminathan, P. Raj, R. Tummala, Giulio Antonini
{"title":"Enabling antenna design with nano-magnetic materials using machine learning","authors":"Carmine Gianfagna, M. Swaminathan, P. Raj, R. Tummala, Giulio Antonini","doi":"10.1109/NMDC.2015.7439256","DOIUrl":null,"url":null,"abstract":"A machine learning approach to design with magneto dielectric nano-composite (MDNC) substrate for planar inverted-F antenna (PIFA) is presented. A new mixing rule model has been developed. A database of material properties has been created using several particle radius and volume fraction. A second database built with antenna simulations has been developed to complete the machine learning dataset. It is shown that, starting from particle radius and volume fraction of the nano-magnetic material, it is possible to calculate the antenna parameters like gain, bandwidth, radiation efficiency, resonant frequency, and viceversa with good precision by using machine learning techniques.","PeriodicalId":181412,"journal":{"name":"2015 IEEE Nanotechnology Materials and Devices Conference (NMDC)","volume":"97 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Nanotechnology Materials and Devices Conference (NMDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NMDC.2015.7439256","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

A machine learning approach to design with magneto dielectric nano-composite (MDNC) substrate for planar inverted-F antenna (PIFA) is presented. A new mixing rule model has been developed. A database of material properties has been created using several particle radius and volume fraction. A second database built with antenna simulations has been developed to complete the machine learning dataset. It is shown that, starting from particle radius and volume fraction of the nano-magnetic material, it is possible to calculate the antenna parameters like gain, bandwidth, radiation efficiency, resonant frequency, and viceversa with good precision by using machine learning techniques.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用机器学习实现纳米磁性材料的天线设计
提出了一种基于机器学习的磁介质纳米复合材料(MDNC)基板平面倒f天线(PIFA)设计方法。提出了一种新的混合规则模型。使用几个粒子半径和体积分数创建了一个材料属性数据库。用天线模拟建立的第二个数据库已经开发出来,以完成机器学习数据集。研究表明,利用机器学习技术,从纳米磁性材料的粒子半径和体积分数出发,可以计算出增益、带宽、辐射效率、谐振频率等天线参数,并且精度较高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Nanotechnology laboratory and nanoelectronics simulation courses Electronic properties of metal-molecular nanojunctions and networks Enabling antenna design with nano-magnetic materials using machine learning HSPICE macromodel of a PMA racetrack memory Tuning macroscopic body interactions by manipulation of quantum vacuum photon-modes at the nanoscale
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1