{"title":"Virtual-Flux Direct Power Control for Mains Connected Three-Level NPC Inverter Systems","authors":"L. Serpa, J. Kolar","doi":"10.1541/IEEJIAS.128.491","DOIUrl":null,"url":null,"abstract":"This paper proposes a control strategy which extends the virtual-flux direct power control traditionally employed for the conventional two-level VSI to a three-level NPC inverter. This topology generates a higher number of output voltage levels, increasing the flexibility for selecting an appropriate voltage vector. The mid-point potential is controlled according to the direction of the mid-point current and the sign of the mid-point voltage deviation. The method is adapted to be used with an LCL output filter, where some undesirable characteristics, such as filter resonance, have to be compensated. Further investigation concerning the dependency of the mid-point voltage with the current phase-shift is given. Theoretical analysis is presented and the performance of the proposed method is verified by simulation.","PeriodicalId":325362,"journal":{"name":"2007 Power Conversion Conference - Nagoya","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 Power Conversion Conference - Nagoya","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1541/IEEJIAS.128.491","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25
Abstract
This paper proposes a control strategy which extends the virtual-flux direct power control traditionally employed for the conventional two-level VSI to a three-level NPC inverter. This topology generates a higher number of output voltage levels, increasing the flexibility for selecting an appropriate voltage vector. The mid-point potential is controlled according to the direction of the mid-point current and the sign of the mid-point voltage deviation. The method is adapted to be used with an LCL output filter, where some undesirable characteristics, such as filter resonance, have to be compensated. Further investigation concerning the dependency of the mid-point voltage with the current phase-shift is given. Theoretical analysis is presented and the performance of the proposed method is verified by simulation.