DynaBARN: Benchmarking Metric Ground Navigation in Dynamic Environments

Anirudh Nair, Fulin Jiang, K. Hou, Zifan Xu, Shuo Li, Xuesu Xiao, P. Stone
{"title":"DynaBARN: Benchmarking Metric Ground Navigation in Dynamic Environments","authors":"Anirudh Nair, Fulin Jiang, K. Hou, Zifan Xu, Shuo Li, Xuesu Xiao, P. Stone","doi":"10.1109/SSRR56537.2022.10018758","DOIUrl":null,"url":null,"abstract":"Safely avoiding dynamic obstacles while moving toward a goal is a fundamental capability of autonomous mobile robots. Current benchmarks for dynamic obstacle avoidance do not provide a way to alter how obstacles move and instead use only a single method to uniquely determine the movement of obstacles, e.g., constant velocity, the social force model, or Optimal Reciprocal Collision Avoidance (ORCA). Using a single method in this way restricts the variety of scenarios in which the robot navigation system is trained and/or evaluated, thus limiting its robustness to dynamic obstacles of different speeds, trajectory smoothness, acceleration/deceleration, etc., which we call motion profiles. In this paper, we present a simulation testbed, DynaBARN, to evaluate a robot navigation system's ability to navigate in environments with obstacles with different motion profiles, which are systematically generated by a set of difficulty metrics. Additionally, we provide a demonstration collection pipeline that records robot navigation trials controlled by human users to compare with autonomous navigation performance and to develop navigation systems using learning from demonstration. Finally, we provide results of four classical and learning-based navigation systems in DynaBARN, which can serve as baselines for future studies. We release DynaBARN open source as a standardized benchmark for future autonomous navigation research in environments with different dynamic obstacles. The code and environments are released at https://github.com/aninair1905/DynaBARN.","PeriodicalId":272862,"journal":{"name":"2022 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSRR56537.2022.10018758","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Safely avoiding dynamic obstacles while moving toward a goal is a fundamental capability of autonomous mobile robots. Current benchmarks for dynamic obstacle avoidance do not provide a way to alter how obstacles move and instead use only a single method to uniquely determine the movement of obstacles, e.g., constant velocity, the social force model, or Optimal Reciprocal Collision Avoidance (ORCA). Using a single method in this way restricts the variety of scenarios in which the robot navigation system is trained and/or evaluated, thus limiting its robustness to dynamic obstacles of different speeds, trajectory smoothness, acceleration/deceleration, etc., which we call motion profiles. In this paper, we present a simulation testbed, DynaBARN, to evaluate a robot navigation system's ability to navigate in environments with obstacles with different motion profiles, which are systematically generated by a set of difficulty metrics. Additionally, we provide a demonstration collection pipeline that records robot navigation trials controlled by human users to compare with autonomous navigation performance and to develop navigation systems using learning from demonstration. Finally, we provide results of four classical and learning-based navigation systems in DynaBARN, which can serve as baselines for future studies. We release DynaBARN open source as a standardized benchmark for future autonomous navigation research in environments with different dynamic obstacles. The code and environments are released at https://github.com/aninair1905/DynaBARN.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
动态环境下的地面导航基准测试
在移动过程中安全避开动态障碍物是自主移动机器人的一项基本能力。目前的动态避障基准并没有提供一种方法来改变障碍物的移动方式,而是只使用一种方法来唯一地确定障碍物的运动,例如,恒速,社会力模型或最优互防碰撞(ORCA)。以这种方式使用单一方法限制了机器人导航系统训练和/或评估场景的多样性,从而限制了其对不同速度、轨迹平滑度、加速/减速等动态障碍物的鲁棒性,我们称之为运动轮廓。在本文中,我们提出了一个仿真测试平台,DynaBARN,以评估机器人导航系统在具有不同运动特征的障碍物环境中的导航能力,这些障碍物是由一组难度指标系统生成的。此外,我们提供了一个演示收集管道,记录由人类用户控制的机器人导航试验,以与自主导航性能进行比较,并通过从演示中学习来开发导航系统。最后,我们在DynaBARN中提供了四种经典和基于学习的导航系统的结果,可以作为未来研究的基础。我们发布了DynaBARN开源,作为未来在不同动态障碍物环境下自主导航研究的标准化基准。代码和环境在https://github.com/aninair1905/DynaBARN上发布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Autonomous Human Navigation Using Wearable Multiple Laser Projection Suit An innovative pick-up and transport robot system for casualty evacuation DynaBARN: Benchmarking Metric Ground Navigation in Dynamic Environments Multi-Robot System for Autonomous Cooperative Counter-UAS Missions: Design, Integration, and Field Testing Autonomous Robotic Map Refinement for Targeted Resolution and Local Accuracy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1