COMPROF and COMPLACE: Shared-Memory Communication Profiling and Automated Thread Placement via Dynamic Binary Instrumentation

Ryan Kirkpatrick, Christopher Brown, Vladimir Janjic
{"title":"COMPROF and COMPLACE: Shared-Memory Communication Profiling and Automated Thread Placement via Dynamic Binary Instrumentation","authors":"Ryan Kirkpatrick, Christopher Brown, Vladimir Janjic","doi":"10.1109/HiPC56025.2022.00040","DOIUrl":null,"url":null,"abstract":"This paper presents COMPROF and COMPLACE, a novel profiling tool and thread placement technique for shared-memory architectures that requires no recompilation or user intervention. We use dynamic binary instrumentation to intercept memory operations and estimate inter-thread communication overhead, deriving (and possibly visualising) a communication graph of data-sharing between threads. We then use this graph to map threads to cores in order to optimise memory traffic through the memory system. Different paths through a system’s memory hierarchy have different latency, throughput and energy properties, COMPLACE exploits this heterogeneity to provide automatic performance and energy improvements for multithreaded programs. We demonstrate COMPLACE on the NAS Parallel Benchmark (NPB) suite where, using our technique, we are able to achieve improvements of up to 12% in the execution time and up to 10% in the energy consumption (compared to default Linux scheduling) while not requiring any modification or recompilation of the application code.","PeriodicalId":119363,"journal":{"name":"2022 IEEE 29th International Conference on High Performance Computing, Data, and Analytics (HiPC)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 29th International Conference on High Performance Computing, Data, and Analytics (HiPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HiPC56025.2022.00040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents COMPROF and COMPLACE, a novel profiling tool and thread placement technique for shared-memory architectures that requires no recompilation or user intervention. We use dynamic binary instrumentation to intercept memory operations and estimate inter-thread communication overhead, deriving (and possibly visualising) a communication graph of data-sharing between threads. We then use this graph to map threads to cores in order to optimise memory traffic through the memory system. Different paths through a system’s memory hierarchy have different latency, throughput and energy properties, COMPLACE exploits this heterogeneity to provide automatic performance and energy improvements for multithreaded programs. We demonstrate COMPLACE on the NAS Parallel Benchmark (NPB) suite where, using our technique, we are able to achieve improvements of up to 12% in the execution time and up to 10% in the energy consumption (compared to default Linux scheduling) while not requiring any modification or recompilation of the application code.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
COMPROF和COMPLACE:通过动态二进制检测实现共享内存通信分析和自动线程放置
本文介绍了COMPROF和COMPLACE,这是一种新的分析工具和线程放置技术,用于共享内存体系结构,不需要重新编译或用户干预。我们使用动态二进制工具来拦截内存操作并估计线程间通信开销,推导(并可能可视化)线程间数据共享的通信图。然后,我们使用此图将线程映射到内核,以便通过内存系统优化内存流量。通过系统内存层次结构的不同路径具有不同的延迟、吞吐量和能量属性,COMPLACE利用这种异质性为多线程程序提供自动性能和能量改进。我们在NAS Parallel Benchmark (NPB)套件上演示了COMPLACE,使用我们的技术,我们能够在执行时间上实现高达12%的改进,在能耗上实现高达10%的改进(与默认Linux调度相比),同时不需要修改或重新编译应用程序代码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
HiPC 2022 Technical Program Committee A Deep Learning-Based In Situ Analysis Framework for Tropical Cyclogenesis Prediction COMPROF and COMPLACE: Shared-Memory Communication Profiling and Automated Thread Placement via Dynamic Binary Instrumentation Message from the HiPC 2022 General Co-Chairs Efficient Personalized and Non-Personalized Alltoall Communication for Modern Multi-HCA GPU-Based Clusters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1