Efficient Personalized and Non-Personalized Alltoall Communication for Modern Multi-HCA GPU-Based Clusters

K. Suresh, Akshay Paniraja Guptha, Benjamin Michalowicz, B. Ramesh, M. Abduljabbar, A. Shafi, H. Subramoni, D. Panda
{"title":"Efficient Personalized and Non-Personalized Alltoall Communication for Modern Multi-HCA GPU-Based Clusters","authors":"K. Suresh, Akshay Paniraja Guptha, Benjamin Michalowicz, B. Ramesh, M. Abduljabbar, A. Shafi, H. Subramoni, D. Panda","doi":"10.1109/HiPC56025.2022.00025","DOIUrl":null,"url":null,"abstract":"Graphics Processing Units (GPUs) have become ubiquitous in today’s supercomputing clusters primarily because of their high compute capability and power efficiency. Message Passing Interface (MPI) is a widely adopted programming model for large-scale GPU-based applications used in such clusters. Modern GPU-based systems have multiple HCAs. Previously, scientists have leveraged multi-HCA systems to accelerate inter-node transfers between CPUs using point-to-point primitives. In this work, we show the need for collective-level, multi-rail aware algorithms using MPI_Allgather as an example. We then propose an efficient multi-rail MPI_Allgather algorithm and extend it to MPI_Alltoall. We analyze the performance of this algorithm using OMB benchmark suite. We demonstrate approximately 30% and 43% improvement in non-personalized and personalized communication benchmarks respectively when compared with the state-of-the-art MPI libraries on 128 GPUs","PeriodicalId":119363,"journal":{"name":"2022 IEEE 29th International Conference on High Performance Computing, Data, and Analytics (HiPC)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 29th International Conference on High Performance Computing, Data, and Analytics (HiPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HiPC56025.2022.00025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Graphics Processing Units (GPUs) have become ubiquitous in today’s supercomputing clusters primarily because of their high compute capability and power efficiency. Message Passing Interface (MPI) is a widely adopted programming model for large-scale GPU-based applications used in such clusters. Modern GPU-based systems have multiple HCAs. Previously, scientists have leveraged multi-HCA systems to accelerate inter-node transfers between CPUs using point-to-point primitives. In this work, we show the need for collective-level, multi-rail aware algorithms using MPI_Allgather as an example. We then propose an efficient multi-rail MPI_Allgather algorithm and extend it to MPI_Alltoall. We analyze the performance of this algorithm using OMB benchmark suite. We demonstrate approximately 30% and 43% improvement in non-personalized and personalized communication benchmarks respectively when compared with the state-of-the-art MPI libraries on 128 GPUs
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
现代多hca gpu集群的高效个性化和非个性化全通信
图形处理单元(gpu)在当今的超级计算集群中变得无处不在,主要是因为它们具有高计算能力和能效。消息传递接口(Message Passing Interface, MPI)是一种广泛采用的编程模型,用于此类集群中使用的基于gpu的大规模应用程序。现代基于gpu的系统有多个hca。此前,科学家们利用多hca系统使用点对点原语加速cpu之间的节点间传输。在这项工作中,我们以MPI_Allgather为例展示了对集体级多轨道感知算法的需求。然后,我们提出了一种高效的多轨道MPI_Allgather算法,并将其扩展到MPI_Alltoall。我们使用OMB基准测试套件对该算法的性能进行了分析。与128 gpu上最先进的MPI库相比,我们在非个性化和个性化通信基准测试中分别展示了大约30%和43%的改进
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
HiPC 2022 Technical Program Committee A Deep Learning-Based In Situ Analysis Framework for Tropical Cyclogenesis Prediction COMPROF and COMPLACE: Shared-Memory Communication Profiling and Automated Thread Placement via Dynamic Binary Instrumentation Message from the HiPC 2022 General Co-Chairs Efficient Personalized and Non-Personalized Alltoall Communication for Modern Multi-HCA GPU-Based Clusters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1