Principal component analysis of spectral perturbation parameters for voice pathology detection

P. Gómez, Francisco Díaz Pérez, Agustín Álvarez Marquina, Katherine Murphy, C. Lázaro, R. Martínez, M. V. R. Biarge
{"title":"Principal component analysis of spectral perturbation parameters for voice pathology detection","authors":"P. Gómez, Francisco Díaz Pérez, Agustín Álvarez Marquina, Katherine Murphy, C. Lázaro, R. Martínez, M. V. R. Biarge","doi":"10.1109/CBMS.2005.88","DOIUrl":null,"url":null,"abstract":"In recent years emphasis has been placed upon the early detection of voice pathologies by using the signal processing of voice to evaluate certain time and spectrum domain parameters which may infer the presence of pathology. The present work is aimed at establishing the suitability of these voice spectral parameters in fixing a clear distinction between pathologic and normophonic voice, and to further classify the specific patient's pathology. Principal component analysis is used in parameter selection. Results for normal and pathological samples will be presented and discussed.","PeriodicalId":119367,"journal":{"name":"18th IEEE Symposium on Computer-Based Medical Systems (CBMS'05)","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"18th IEEE Symposium on Computer-Based Medical Systems (CBMS'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMS.2005.88","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

In recent years emphasis has been placed upon the early detection of voice pathologies by using the signal processing of voice to evaluate certain time and spectrum domain parameters which may infer the presence of pathology. The present work is aimed at establishing the suitability of these voice spectral parameters in fixing a clear distinction between pathologic and normophonic voice, and to further classify the specific patient's pathology. Principal component analysis is used in parameter selection. Results for normal and pathological samples will be presented and discussed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
语音病理检测中频谱扰动参数的主成分分析
近年来,利用语音信号处理来评估某些可能推断病理存在的时间和频谱域参数,从而对语音病理进行早期检测已成为研究的重点。目前的工作旨在建立这些语音频谱参数的适用性,以明确区分病理性和正常语音,并进一步对特定患者的病理进行分类。采用主成分分析法进行参数选择。将介绍和讨论正常和病理样本的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Markov model-based clustering for efficient patient care Incremental learning of ensemble classifiers on ECG data Grid-enabled workflows for data intensive medical applications Case-based tissue classification for monitoring leg ulcer healing Optimisation of neural network training through pre-establishment of synaptic weights applied to body surface mapping classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1