Initial-population bias in the univariate estimation of distribution algorithm

M. Pelikán, K. Sastry
{"title":"Initial-population bias in the univariate estimation of distribution algorithm","authors":"M. Pelikán, K. Sastry","doi":"10.1145/1569901.1569961","DOIUrl":null,"url":null,"abstract":"This paper analyzes the effects of an initial-population bias on the performance of the univariate marginal distribution algorithm (UMDA). The analysis considers two test problems: (1) onemax and (2) noisy onemax. Theoretical models are provided and verified with experiments. Intuitively, biasing the initial population toward the global optimum should improve performance of UMDA, whereas biasing the initial population away from the global optimum should have the opposite effect. Both theoretical and experimental results confirm this intuition. Effects of mutation on performance of UMDA with initial-population bias are also investigated.","PeriodicalId":193093,"journal":{"name":"Proceedings of the 11th Annual conference on Genetic and evolutionary computation","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th Annual conference on Genetic and evolutionary computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1569901.1569961","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

This paper analyzes the effects of an initial-population bias on the performance of the univariate marginal distribution algorithm (UMDA). The analysis considers two test problems: (1) onemax and (2) noisy onemax. Theoretical models are provided and verified with experiments. Intuitively, biasing the initial population toward the global optimum should improve performance of UMDA, whereas biasing the initial population away from the global optimum should have the opposite effect. Both theoretical and experimental results confirm this intuition. Effects of mutation on performance of UMDA with initial-population bias are also investigated.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
单变量估计分布算法中的初始总体偏差
本文分析了初始总体偏差对单变量边际分布算法(UMDA)性能的影响。该分析考虑了两个测试问题:(1)单极大和(2)噪声单极大。给出了理论模型,并用实验进行了验证。直观地说,将初始种群偏向全局最优应该会提高UMDA的性能,而将初始种群偏离全局最优应该会产生相反的效果。理论和实验结果都证实了这一直觉。研究了突变对具有初始种群偏差的UMDA性能的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Metaheuristics for graph bisection Bayesian network structure learning using cooperative coevolution Session details: Track 10: genetic programming Simulating human grandmasters: evolution and coevolution of evaluation functions An evolutionary approach to feature function generation in application to biomedical image patterns
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1