Achievable Error Exponents for Almost Fixed-Length M-Ary Hypothesis Testing

Jun Diao, Lin Zhou, Lin Bai
{"title":"Achievable Error Exponents for Almost Fixed-Length M-Ary Hypothesis Testing","authors":"Jun Diao, Lin Zhou, Lin Bai","doi":"10.1109/ICASSP49357.2023.10095947","DOIUrl":null,"url":null,"abstract":"We revisit multiple hypothesis testing and propose a two-phase test, where each phase is a fixed-length test and the second-phase proceeds only if a reject option is decided in the first phase. We derive achievable error exponents of error probabilities under each hypothesis and show that our two-phase test bridges over fixed-length and sequential tests in both Neyman-Pearson and Bayesian settings in the similar spirit of Lalitha and Javidi [1] for binary hypothesis testing. Specifically, our test may achieve the performance close to a sequential test with the asymptotic complexity of a fixed-length test and such test is named the almost fixed-length test. Our results generalize the design and analysis of the almost fixed-length test for binary hypothesis testing to account for more than two outcomes.","PeriodicalId":113072,"journal":{"name":"ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP49357.2023.10095947","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We revisit multiple hypothesis testing and propose a two-phase test, where each phase is a fixed-length test and the second-phase proceeds only if a reject option is decided in the first phase. We derive achievable error exponents of error probabilities under each hypothesis and show that our two-phase test bridges over fixed-length and sequential tests in both Neyman-Pearson and Bayesian settings in the similar spirit of Lalitha and Javidi [1] for binary hypothesis testing. Specifically, our test may achieve the performance close to a sequential test with the asymptotic complexity of a fixed-length test and such test is named the almost fixed-length test. Our results generalize the design and analysis of the almost fixed-length test for binary hypothesis testing to account for more than two outcomes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
几乎固定长度M-Ary假设检验的可实现误差指数
我们重新审视多个假设检验,并提出一个两阶段检验,其中每个阶段是一个固定长度的检验,只有在第一阶段决定拒绝选项时,第二阶段才进行。我们推导出每个假设下可实现的误差概率的误差指数,并表明我们的两阶段测试在neiman - pearson和Bayesian设置下的固定长度和顺序测试之间架起桥梁,其精神与Lalitha和Javidi[1]在二元假设检验中的精神相似。具体来说,我们的测试可以达到接近于序列测试的性能,并且具有定长测试的渐近复杂度,我们将这种测试命名为几乎定长测试。我们的结果推广了二元假设检验的几乎固定长度检验的设计和分析,以解释两个以上的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Lightweight Machine Learning for Seizure Detection on Wearable Devices MSN-net: Multi-Scale Normality Network for Video Anomaly Detection ITER-SIS: Robust Unlimited Sampling Via Iterative Signal Sieving Streaming Multi-Channel Speech Separation with Online Time-Domain Generalized Wiener Filter MMATR: A Lightweight Approach for Multimodal Sentiment Analysis Based on Tensor Methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1