Thermal characterization of TSV based 3D stacked ICs

S. Swarup, S. Tan, Zao Liu
{"title":"Thermal characterization of TSV based 3D stacked ICs","authors":"S. Swarup, S. Tan, Zao Liu","doi":"10.1109/EPEPS.2012.6457910","DOIUrl":null,"url":null,"abstract":"This paper studies the thermal impact and characterization of Through Silicon Vias (TSVs) in stacked three dimensional (3D) integrated circuits (ICs) through finite-element based numerical analysis. Realistic 3D stacked ICs are built using a commercial finite-element based modeling and analysis tool, COMSOL. Thermal profiles along with thermal impact of TSVs are studied for two layer and three layer stacked IC structures under practical power inputs. Experimental results show that there is a significant temperature gradient across the stacked dies for both two layer and three layer structures. The cross-layer temperature is seen to grow rapidly from two layer structures to three layer structures with the same power and TSV densities. As a result, stacking of active layers will not be scalable as the maximum temperature can quickly reach the 105 degree Centigrade limit for CMOS technology. Elevated temperatures can make thermal-sensitive reliability issues a major challenge for 3D stacked ICs. Advanced cooling, low power design, better thermal management and new architecture techniques are hence required to keep the temperature in a safe range for stacking more layers onto the chip.","PeriodicalId":188377,"journal":{"name":"2012 IEEE 21st Conference on Electrical Performance of Electronic Packaging and Systems","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 21st Conference on Electrical Performance of Electronic Packaging and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EPEPS.2012.6457910","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

This paper studies the thermal impact and characterization of Through Silicon Vias (TSVs) in stacked three dimensional (3D) integrated circuits (ICs) through finite-element based numerical analysis. Realistic 3D stacked ICs are built using a commercial finite-element based modeling and analysis tool, COMSOL. Thermal profiles along with thermal impact of TSVs are studied for two layer and three layer stacked IC structures under practical power inputs. Experimental results show that there is a significant temperature gradient across the stacked dies for both two layer and three layer structures. The cross-layer temperature is seen to grow rapidly from two layer structures to three layer structures with the same power and TSV densities. As a result, stacking of active layers will not be scalable as the maximum temperature can quickly reach the 105 degree Centigrade limit for CMOS technology. Elevated temperatures can make thermal-sensitive reliability issues a major challenge for 3D stacked ICs. Advanced cooling, low power design, better thermal management and new architecture techniques are hence required to keep the temperature in a safe range for stacking more layers onto the chip.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于TSV的3D堆叠ic热特性研究
本文采用基于有限元的数值分析方法,研究了堆叠三维集成电路中硅通孔(tsv)的热影响及其特性。逼真的3D堆叠ic是使用基于商业有限元的建模和分析工具COMSOL构建的。研究了两层和三层堆叠集成电路结构在实际输入功率下的热分布和热冲击。实验结果表明,无论是两层结构还是三层结构,叠层模间都存在明显的温度梯度。在相同的功率和TSV密度下,层间温度从两层结构迅速增长到三层结构。因此,有源层的堆叠将无法扩展,因为CMOS技术的最高温度可以迅速达到105摄氏度的极限。高温会使热敏可靠性问题成为3D堆叠ic的主要挑战。因此,需要先进的冷却、低功耗设计、更好的热管理和新的架构技术来将温度保持在安全范围内,以便在芯片上堆叠更多的层。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Nonlinear block-type leapfrog scheme for the fast simulation of multiconductor transmission lines with nonlinear drivers and terminations S-parameter based multimode signaling Simultaneous switching noise analysis of reference voltage rails for pseudo differential interfaces A partial homomorphic encryption scheme for secure design automation on public clouds Thermal characterization of TSV based 3D stacked ICs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1