Cross-illumination Evaluation of Hand Crafted and Deep Features for Fusion of Selfie Face and Ocular Biometrics

Leena Kondapi, A. Rattani, R. Derakhshani
{"title":"Cross-illumination Evaluation of Hand Crafted and Deep Features for Fusion of Selfie Face and Ocular Biometrics","authors":"Leena Kondapi, A. Rattani, R. Derakhshani","doi":"10.1109/HST47167.2019.9032976","DOIUrl":null,"url":null,"abstract":"This paper addresses the implementation of a multiunit biometric system. Results are shown for multi-unit classification with VISible light mobile Ocular Biometric (VISOB) dataset using feature descriptors such as Local Binary Patterns (LBP) and Histogram of oriented gradients (HOG). We also evaluate the pre-trained deep learning models such as VGG16, ResNet18, MobileNetV1, MobileNetV2, and LightCNN9. Experimental evaluation on large scale VISOB dataset suggests that feature-level fusion followed by score-level fusion of left ocular region, right ocular region and face region in office light condition, daylight and dims condition has provided Equal Error Rates (EER) of 9.3%, 8.0% and 10.6% respectively. Also, combining the pretrained models using feature fusion decreased the EER even further.","PeriodicalId":293746,"journal":{"name":"2019 IEEE International Symposium on Technologies for Homeland Security (HST)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Symposium on Technologies for Homeland Security (HST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HST47167.2019.9032976","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

This paper addresses the implementation of a multiunit biometric system. Results are shown for multi-unit classification with VISible light mobile Ocular Biometric (VISOB) dataset using feature descriptors such as Local Binary Patterns (LBP) and Histogram of oriented gradients (HOG). We also evaluate the pre-trained deep learning models such as VGG16, ResNet18, MobileNetV1, MobileNetV2, and LightCNN9. Experimental evaluation on large scale VISOB dataset suggests that feature-level fusion followed by score-level fusion of left ocular region, right ocular region and face region in office light condition, daylight and dims condition has provided Equal Error Rates (EER) of 9.3%, 8.0% and 10.6% respectively. Also, combining the pretrained models using feature fusion decreased the EER even further.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自拍照人脸与眼生物特征融合的手工特征与深度特征交叉照明评价
本文讨论了多单元生物识别系统的实现。利用局部二值模式(Local Binary Patterns, LBP)和定向梯度直方图(Histogram of oriented gradients, HOG)等特征描述符,对可见光移动眼生物特征(VISOB)数据集进行多单元分类。我们还评估了预训练的深度学习模型,如VGG16、ResNet18、MobileNetV1、MobileNetV2和LightCNN9。在大型VISOB数据集上进行的实验评估表明,在办公室光线、白天和昏暗条件下,先进行特征级融合,再进行左眼区、右眼区和脸区评分级融合的等效误差率(EER)分别为9.3%、8.0%和10.6%。此外,使用特征融合结合预训练模型进一步降低了EER。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cross-illumination Evaluation of Hand Crafted and Deep Features for Fusion of Selfie Face and Ocular Biometrics Using Transfer Learning and BPDFHE to Improve Ocular Image Recognition Accuracy Protecting Personally Identifiable Information (PII) in Critical Infrastructure Data Using Differential Privacy System Design for Quadrant-Based Indoor Localization of Emergency Responders Ensuring Flexibility and Security in SDN-Based Spacecraft Communication Networks through Risk Assessment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1