Using Transfer Learning and BPDFHE to Improve Ocular Image Recognition Accuracy

Riddhiman Das, R. Derakhshani
{"title":"Using Transfer Learning and BPDFHE to Improve Ocular Image Recognition Accuracy","authors":"Riddhiman Das, R. Derakhshani","doi":"10.1109/HST47167.2019.9032914","DOIUrl":null,"url":null,"abstract":"We used image enhancement algorithms along with transfer learning to fine-tune a deep convolutional neural network to perform ocular image recognition. To enhance the input images, we used a novel color image histogram equalization technique called Brightness Preserving Dynamic Fuzzy Histogram Equalization, which showed significant accuracy improvements: on the test data, using AlexNet, the ROC Area Under the Curve (AUC) increased to over 0.99, Equal Error Rate (EER) decreased 4-fold and dropped below 4%, and decidability (a measure of class separability) increased from 1.89 to 4.17","PeriodicalId":293746,"journal":{"name":"2019 IEEE International Symposium on Technologies for Homeland Security (HST)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Symposium on Technologies for Homeland Security (HST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HST47167.2019.9032914","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We used image enhancement algorithms along with transfer learning to fine-tune a deep convolutional neural network to perform ocular image recognition. To enhance the input images, we used a novel color image histogram equalization technique called Brightness Preserving Dynamic Fuzzy Histogram Equalization, which showed significant accuracy improvements: on the test data, using AlexNet, the ROC Area Under the Curve (AUC) increased to over 0.99, Equal Error Rate (EER) decreased 4-fold and dropped below 4%, and decidability (a measure of class separability) increased from 1.89 to 4.17
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用迁移学习和BPDFHE提高眼图像识别精度
我们使用图像增强算法和迁移学习来微调深度卷积神经网络来执行眼部图像识别。为了增强输入图像,我们使用了一种新的彩色图像直方图均衡化技术,称为亮度保持动态模糊直方图均衡化,该技术显示出显着的准确性提高:在测试数据上,使用AlexNet, ROC曲线下面积(AUC)增加到0.99以上,相等错误率(EER)下降了4倍,降至4%以下,可判定性(类别可分性的度量)从1.89增加到4.17
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cross-illumination Evaluation of Hand Crafted and Deep Features for Fusion of Selfie Face and Ocular Biometrics Using Transfer Learning and BPDFHE to Improve Ocular Image Recognition Accuracy Protecting Personally Identifiable Information (PII) in Critical Infrastructure Data Using Differential Privacy System Design for Quadrant-Based Indoor Localization of Emergency Responders Ensuring Flexibility and Security in SDN-Based Spacecraft Communication Networks through Risk Assessment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1