Detection of Gigahertz Nanomechanical Vibrations with Localized Gap Plasmons in a Pillar Nanoantenna Architecture

O. Balogun, B. Lu, Li Zhang, Xiang Chen
{"title":"Detection of Gigahertz Nanomechanical Vibrations with Localized Gap Plasmons in a Pillar Nanoantenna Architecture","authors":"O. Balogun, B. Lu, Li Zhang, Xiang Chen","doi":"10.1109/NANO.2018.8626227","DOIUrl":null,"url":null,"abstract":"Plasmonic nanostructures are versatile tools for coupling electromagnetic waves to electronic charge oscillations in noble metals at sub-wavelength length scales. The plasmon resonance frequencies of a noble metal depend on its geometry and refractive index of the material, making them ideal nanosensors for local detection of mechanical vibrations and acoustic waves. In this work, we present a pillar-based plasmonic architecture comprised of an array of gold dimers elevated from the substrate by narrow polymer or silica posts that enable efficient funneling of far-field light to plasmons in the gap between the gold dimers, with limited coupling to the substrate. The localized gap plasmon resonance of a coupled gold dimer is strongly modulated by width of the nanoscale gap separating the gold caps, as such, the nanomechanical vibration of the caps is readout by the demodulation of the intensity of the far-field optical scattering. In this work, we explore the gold dimers to demonstrate polarization sensitive detection of in-plane nanomechanical vibrations at frequencies of up 20 GHz in various dimer configurations. We explore numerical modeling to quantify the displacement sensitivity of the plasmonic-nanomechanical device and to investigate the dependence of the vibration detection sensitivity on the dimer configurations. This work may has the potential to pave the way for developing pillar plasmonic dimers for high frequency nanomechanical sensing and ultrafast reconfigurable photonic devices based on coupled plasmonic oscillators and GHz nanomechanical resonators.","PeriodicalId":425521,"journal":{"name":"2018 IEEE 18th International Conference on Nanotechnology (IEEE-NANO)","volume":"101 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 18th International Conference on Nanotechnology (IEEE-NANO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NANO.2018.8626227","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Plasmonic nanostructures are versatile tools for coupling electromagnetic waves to electronic charge oscillations in noble metals at sub-wavelength length scales. The plasmon resonance frequencies of a noble metal depend on its geometry and refractive index of the material, making them ideal nanosensors for local detection of mechanical vibrations and acoustic waves. In this work, we present a pillar-based plasmonic architecture comprised of an array of gold dimers elevated from the substrate by narrow polymer or silica posts that enable efficient funneling of far-field light to plasmons in the gap between the gold dimers, with limited coupling to the substrate. The localized gap plasmon resonance of a coupled gold dimer is strongly modulated by width of the nanoscale gap separating the gold caps, as such, the nanomechanical vibration of the caps is readout by the demodulation of the intensity of the far-field optical scattering. In this work, we explore the gold dimers to demonstrate polarization sensitive detection of in-plane nanomechanical vibrations at frequencies of up 20 GHz in various dimer configurations. We explore numerical modeling to quantify the displacement sensitivity of the plasmonic-nanomechanical device and to investigate the dependence of the vibration detection sensitivity on the dimer configurations. This work may has the potential to pave the way for developing pillar plasmonic dimers for high frequency nanomechanical sensing and ultrafast reconfigurable photonic devices based on coupled plasmonic oscillators and GHz nanomechanical resonators.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
柱状纳米天线结构中局域间隙等离子体的千兆赫纳米机械振动检测
等离子体纳米结构是在亚波长尺度上耦合贵金属中电磁波与电子电荷振荡的通用工具。贵金属的等离子体共振频率取决于材料的几何形状和折射率,这使得它们成为局部检测机械振动和声波的理想纳米传感器。在这项工作中,我们提出了一种柱状等离子体结构,该结构由一系列金二聚体组成,通过狭窄的聚合物或二氧化硅柱将其从衬底升高,从而使远场光有效地汇集到金二聚体之间的间隙中的等离子体,与衬底的耦合有限。耦合金二聚体的局域间隙等离子体共振受分离金帽的纳米间隙宽度的强烈调制,因此,通过远场光学散射强度的解调来读取帽的纳米机械振动。在这项工作中,我们探索了金二聚体,以证明在不同的二聚体结构中,在高达20 GHz的频率下,对平面内纳米机械振动的偏振敏感检测。我们探索了数值模拟来量化等离子体-纳米机械器件的位移灵敏度,并研究了振动检测灵敏度与二聚体结构的关系。这项工作可能为开发用于高频纳米机械传感的柱状等离子体二聚体和基于耦合等离子体振荡器和GHz纳米机械谐振器的超快可重构光子器件铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Monolithic Integration of III-V on Si Applied to Lasing Micro-Cavities: Insights from STEM and EDX Characterisation of Electroless Deposited Cobalt by Hard and Soft X-ray Photoemission Spectroscopy Multiscale simulation of nanostructured devices Modeling of a Stacked Gated Nanofluidic Channel Metamaterial-Based Label-Free Chemical Sensors for the Detection of Volatile Organic Solutions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1