{"title":"Embrittlement of a Titanium Heater Tube","authors":"","doi":"10.31399/asm.fach.modes.c0048757","DOIUrl":null,"url":null,"abstract":"\n Brief overheating of the 89 mm OD 6.4 mm wall thickness titanium heater tubes (ASTM B337, grade 2) was caused by a flow stoppage in a leach heater. Blue-tinted areas and patches of flaky white, yellow, and brown oxide scale was revealed on visual examination. It was disclosed by subjecting the overheated tube to a flattening test that the tube no longer met ASTM B 337 specifications. Large grain size and numerous needlelike hydride particles were disclosed in the microstructure of the overheated tube. Heating to approximately 815 deg C was revealed by the presence of the flaky oxide and increased grain size. Hydrogen and oxygen absorption was revealed by the presence of hydrides and the shallow surface embrittlement and thus susceptibility to cracking at ambient temperatures was observed. It was concluded that the titanium tubes were embrittled due to overheating the tubes and the severe surface embrittlement resulted from oxygen absorption which made the surface layers susceptible to cracking under start up and shutdown. Replacement tubes made of a heat-resistant alloy (e.g., Hastelloy C-276) were recommended.","PeriodicalId":231268,"journal":{"name":"ASM Failure Analysis Case Histories: Failure Modes and Mechanisms","volume":"165 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASM Failure Analysis Case Histories: Failure Modes and Mechanisms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31399/asm.fach.modes.c0048757","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Brief overheating of the 89 mm OD 6.4 mm wall thickness titanium heater tubes (ASTM B337, grade 2) was caused by a flow stoppage in a leach heater. Blue-tinted areas and patches of flaky white, yellow, and brown oxide scale was revealed on visual examination. It was disclosed by subjecting the overheated tube to a flattening test that the tube no longer met ASTM B 337 specifications. Large grain size and numerous needlelike hydride particles were disclosed in the microstructure of the overheated tube. Heating to approximately 815 deg C was revealed by the presence of the flaky oxide and increased grain size. Hydrogen and oxygen absorption was revealed by the presence of hydrides and the shallow surface embrittlement and thus susceptibility to cracking at ambient temperatures was observed. It was concluded that the titanium tubes were embrittled due to overheating the tubes and the severe surface embrittlement resulted from oxygen absorption which made the surface layers susceptible to cracking under start up and shutdown. Replacement tubes made of a heat-resistant alloy (e.g., Hastelloy C-276) were recommended.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
钛加热管的脆化
外径89毫米6.4毫米壁厚钛加热管(ASTM B337, 2级)的短暂过热是由浸出加热器中的流动停止引起的。目视检查发现蓝色区域和片状白色、黄色和棕色氧化鳞片。通过对过热管进行压扁试验,发现该管不再符合ASTM B 337规范。在过热管的组织中发现了大晶粒尺寸和大量针状氢化物颗粒。加热到大约815℃时,出现了片状氧化物,晶粒尺寸增大。氢化物的存在揭示了氢和氧的吸收,表面浅脆,因此在环境温度下观察到开裂的敏感性。结果表明,钛管的脆性是由于过热引起的,而表面的严重脆性是由于氧气的吸收导致的,这使得钛管的表层在启动和关闭时容易开裂。推荐使用耐热合金(如哈氏C-276)制成的替代管。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fatigue Failures, With Special Reference to Fracture Characteristics Dezincification of a Copper Pipe Welded Joint Electron Fractography Pinpoints Cause of Fatigue Fracture Failure of a Hard-Faced Stainless Steel Pump Sleeve Because of Abrasive Wear by River-Water Silt Fatigue Fracture and Weld
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1