{"title":"Optimizing Endpointing Thresholds using Dialogue Features in a Spoken Dialogue System","authors":"Antoine Raux, M. Eskénazi","doi":"10.3115/1622064.1622066","DOIUrl":null,"url":null,"abstract":"This paper describes a novel algorithm to dynamically set endpointing thresholds based on a rich set of dialogue features to detect the end of user utterances in a dialogue system. By analyzing the relationship between silences in user's speech to a spoken dialogue system and a wide range of automatically extracted features from discourse, semantics, prosody, timing and speaker characteristics, we found that all features correlate with pause duration and with whether a silence indicates the end of the turn, with semantics and timing being the most informative. Based on these features, the proposed method reduces latency by up to 24% over a fixed threshold baseline. Offline evaluation results were confirmed by implementing the proposed algorithm in the Let's Go system.","PeriodicalId":426429,"journal":{"name":"SIGDIAL Workshop","volume":"184 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"87","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIGDIAL Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3115/1622064.1622066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 87
Abstract
This paper describes a novel algorithm to dynamically set endpointing thresholds based on a rich set of dialogue features to detect the end of user utterances in a dialogue system. By analyzing the relationship between silences in user's speech to a spoken dialogue system and a wide range of automatically extracted features from discourse, semantics, prosody, timing and speaker characteristics, we found that all features correlate with pause duration and with whether a silence indicates the end of the turn, with semantics and timing being the most informative. Based on these features, the proposed method reduces latency by up to 24% over a fixed threshold baseline. Offline evaluation results were confirmed by implementing the proposed algorithm in the Let's Go system.