Shangqi Lu, W. Martens, Matthias Niewerth, Yufei Tao
{"title":"An Optimal Algorithm for Partial Order Multiway Search","authors":"Shangqi Lu, W. Martens, Matthias Niewerth, Yufei Tao","doi":"10.1145/3604437.3604456","DOIUrl":null,"url":null,"abstract":"Partial order multiway search (POMS) is an important problem that finds use in crowdsourcing, distributed file systems, software testing, etc. In this problem, a game is played between an algorithm A and an oracle, based on a directed acyclic graph G known to both parties. First, the oracle picks a vertex t in G called the target; then, A aims to figure out which vertex is t by probing reachability. In each probe, A selects a set Q of vertices in G whose size is bounded by a pre-agreed value k, and the oracle then reveals, for each vertex q 2 Q, whether q can reach the target in G. The objective of A is to minimize the number of probes. This article presents an algorithm to solve POMS in O(log1+k n + d k log1+d n) probes, where n is the number of vertices in G, and d is the largest out-degree of the vertices in G. The probing complexity is asymptotically optimal.","PeriodicalId":346332,"journal":{"name":"ACM SIGMOD Record","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGMOD Record","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3604437.3604456","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Partial order multiway search (POMS) is an important problem that finds use in crowdsourcing, distributed file systems, software testing, etc. In this problem, a game is played between an algorithm A and an oracle, based on a directed acyclic graph G known to both parties. First, the oracle picks a vertex t in G called the target; then, A aims to figure out which vertex is t by probing reachability. In each probe, A selects a set Q of vertices in G whose size is bounded by a pre-agreed value k, and the oracle then reveals, for each vertex q 2 Q, whether q can reach the target in G. The objective of A is to minimize the number of probes. This article presents an algorithm to solve POMS in O(log1+k n + d k log1+d n) probes, where n is the number of vertices in G, and d is the largest out-degree of the vertices in G. The probing complexity is asymptotically optimal.