Efficient and Reusable Lazy Sampling

Viktor Sanca, Periklis Chrysogelos, Anastasia Ailamaki
{"title":"Efficient and Reusable Lazy Sampling","authors":"Viktor Sanca, Periklis Chrysogelos, Anastasia Ailamaki","doi":"10.1145/3665252.3665261","DOIUrl":null,"url":null,"abstract":"Modern analytical engines rely on Approximate Query Processing (AQP) to provide faster response times than the hardware allows for exact query answering. However, existing AQP methods impose steep performance penalties as workload unpredictability increases. While offline AQP relies on predictable workloads to a priori create samples that match the queries, as soon as workload predictability diminishes, returning to existing online AQP methods that create query-specific samples with little reuse across queries results in significantly smaller gains in response times. As a result, existing approaches cannot fully exploit the benefits of sampling under increased unpredictability.\n We propose LAQy, a framework for building, expanding, and merging samples to adapt to the changes in workload predicates. We propose lazy sampling to overcome the unpredictability issues that cause fast-but-specialized samples to be query-specific and design it for a scale-up analytical engine to show the adaptivity and practicality of our framework in a modern system. LAQy speeds up online sampling processing as a function of data access and computation reuse, making sampler placement after expensive operators more practical.","PeriodicalId":346332,"journal":{"name":"ACM SIGMOD Record","volume":"27 7","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGMOD Record","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3665252.3665261","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Modern analytical engines rely on Approximate Query Processing (AQP) to provide faster response times than the hardware allows for exact query answering. However, existing AQP methods impose steep performance penalties as workload unpredictability increases. While offline AQP relies on predictable workloads to a priori create samples that match the queries, as soon as workload predictability diminishes, returning to existing online AQP methods that create query-specific samples with little reuse across queries results in significantly smaller gains in response times. As a result, existing approaches cannot fully exploit the benefits of sampling under increased unpredictability. We propose LAQy, a framework for building, expanding, and merging samples to adapt to the changes in workload predicates. We propose lazy sampling to overcome the unpredictability issues that cause fast-but-specialized samples to be query-specific and design it for a scale-up analytical engine to show the adaptivity and practicality of our framework in a modern system. LAQy speeds up online sampling processing as a function of data access and computation reuse, making sampler placement after expensive operators more practical.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高效、可重复使用的懒人取样
现代分析引擎依靠近似查询处理(AQP)提供比硬件允许的精确查询回答更快的响应时间。然而,随着工作负载不可预测性的增加,现有的近似查询处理方法会带来严重的性能损失。离线 AQP 依赖于可预测的工作负载来先验地创建与查询相匹配的样本,而一旦工作负载的可预测性降低,返回到现有的在线 AQP 方法,即创建特定于查询的样本,而很少在不同查询之间重复使用,结果响应时间的提升明显较小。因此,现有方法无法在不可预测性增加的情况下充分发挥采样的优势。我们提出了 LAQy,这是一个用于构建、扩展和合并样本以适应工作负载谓词变化的框架。我们提出了 "懒采样 "来克服导致快速但专业的采样只能针对特定查询的不可预测性问题,并为一个扩展分析引擎设计了该框架,以展示我们的框架在现代系统中的适应性和实用性。作为数据访问和计算重用的函数,LAQy 加快了在线采样处理的速度,使得在昂贵的运算器之后放置采样器更加实用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Technical Perspective: Efficient and Reusable Lazy Sampling Unicorn: A Unified Multi-Tasking Matching Model Learning to Restructure Tables Automatically DBSP: Incremental Computation on Streams and Its Applications to Databases Efficient and Reusable Lazy Sampling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1