Learning to Restructure Tables Automatically

J. M. Hellerstein
{"title":"Learning to Restructure Tables Automatically","authors":"J. M. Hellerstein","doi":"10.1145/3665252.3665268","DOIUrl":null,"url":null,"abstract":"By now, it is widely-accepted folk wisdom that \"half of the time in any data analysis project is spent wrangling the data\". Analytic algorithms and tools-built on mathematical foundations of matrices and relations-require their data to be lined up in particular rows and columns. In the relational model (known in data science circles as \"tidy data\"), each row is an independent observation, and each column is a distinct attribute of the phenomenon described by the data. While there are many thorny aspects to data wrangling, perhaps none is more basic than the challenge of getting data reorganized, positionally, into the right form for analysis.","PeriodicalId":346332,"journal":{"name":"ACM SIGMOD Record","volume":"54 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGMOD Record","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3665252.3665268","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

By now, it is widely-accepted folk wisdom that "half of the time in any data analysis project is spent wrangling the data". Analytic algorithms and tools-built on mathematical foundations of matrices and relations-require their data to be lined up in particular rows and columns. In the relational model (known in data science circles as "tidy data"), each row is an independent observation, and each column is a distinct attribute of the phenomenon described by the data. While there are many thorny aspects to data wrangling, perhaps none is more basic than the challenge of getting data reorganized, positionally, into the right form for analysis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
学会自动重组表格
现在,"任何数据分析项目都有一半的时间花在处理数据上",这是广为接受的民间智慧。建立在矩阵和关系数学基础上的分析算法和工具要求数据按特定的行列排列。在关系模型中(在数据科学界被称为 "整齐数据"),每一行都是一个独立的观察结果,每一列都是数据所描述现象的独特属性。虽然数据处理有许多棘手的问题,但最基本的挑战可能莫过于如何将数据重新组织、定位,使其成为分析所需的正确形式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Technical Perspective: Efficient and Reusable Lazy Sampling Unicorn: A Unified Multi-Tasking Matching Model Learning to Restructure Tables Automatically DBSP: Incremental Computation on Streams and Its Applications to Databases Efficient and Reusable Lazy Sampling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1