Modeling neural plasticity in echo state networks for time series prediction

Mohd-Hanif Yusoff, Yaochu Jin
{"title":"Modeling neural plasticity in echo state networks for time series prediction","authors":"Mohd-Hanif Yusoff, Yaochu Jin","doi":"10.1109/UKCI.2014.6930163","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate the influence of neural plasticity on the learning performance of echo state networks (ESNs) and supervised learning algorithms in training readout connections for two time series prediction problems including the sunspot time series and the Mackey Glass chaotic system. We implement two different plasticity rules that are expected to improve the prediction performance, namely, anti-Oja learning rule and the Bienenstock-Cooper-Munro (BCM) learning rule combined with both offline and online learning of the readout connections. Our experimental results have demonstrated that the neural plasticity can more significantly enhance the learning in offline learning than in online learning.","PeriodicalId":315044,"journal":{"name":"2014 14th UK Workshop on Computational Intelligence (UKCI)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 14th UK Workshop on Computational Intelligence (UKCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UKCI.2014.6930163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper, we investigate the influence of neural plasticity on the learning performance of echo state networks (ESNs) and supervised learning algorithms in training readout connections for two time series prediction problems including the sunspot time series and the Mackey Glass chaotic system. We implement two different plasticity rules that are expected to improve the prediction performance, namely, anti-Oja learning rule and the Bienenstock-Cooper-Munro (BCM) learning rule combined with both offline and online learning of the readout connections. Our experimental results have demonstrated that the neural plasticity can more significantly enhance the learning in offline learning than in online learning.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
时间序列预测中回声状态网络的神经可塑性建模
本文针对太阳黑子时间序列和Mackey Glass混沌系统这两个时间序列预测问题,研究了神经可塑性对回声状态网络(echo state network, ESNs)和监督学习算法的学习性能的影响。我们实现了两种不同的有望提高预测性能的可塑性规则,即anti-Oja学习规则和结合读出连接离线和在线学习的Bienenstock-Cooper-Munro (BCM)学习规则。我们的实验结果表明,与在线学习相比,神经可塑性对离线学习的促进作用更为显著。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PermGA algorithm for a sequential optimal space filling DoE framework Modeling neural plasticity in echo state networks for time series prediction Hybridisation of decomposition and GRASP for combinatorial multiobjective optimisation Adaptive mutation in dynamic environments Automatic image annotation with long distance spatial-context
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1