{"title":"Automatic image annotation with long distance spatial-context","authors":"Donglin Cao, Dazhen Lin, Jiansong Yu","doi":"10.1109/UKCI.2014.6930181","DOIUrl":null,"url":null,"abstract":"Because of high computational complexity, a long distance spatial-context based automatic image annotation is hard to achieve. Some state of art approaches in image processing, such as 2D-HMM, only considering short distance spatial-context (two neighbors) to reduce the computational complexity. However, these approaches cannot describe long distance semantic spatial-context in image. Therefore, in this paper, we propose a two-step Long Distance Spatial-context Model (LDSM) to solve that problem. First, because of high computational complexity in 2D spatial-context, we transform a 2D spatial-context into a 1D sequence-context. Second, we use conditional random fields to model the 1D sequence-context. Our experiments show that LDSM models the semantic relation between annotated object and background, and experiment results outperform the classical automatic image annotation approach (SVM).","PeriodicalId":315044,"journal":{"name":"2014 14th UK Workshop on Computational Intelligence (UKCI)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 14th UK Workshop on Computational Intelligence (UKCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UKCI.2014.6930181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Because of high computational complexity, a long distance spatial-context based automatic image annotation is hard to achieve. Some state of art approaches in image processing, such as 2D-HMM, only considering short distance spatial-context (two neighbors) to reduce the computational complexity. However, these approaches cannot describe long distance semantic spatial-context in image. Therefore, in this paper, we propose a two-step Long Distance Spatial-context Model (LDSM) to solve that problem. First, because of high computational complexity in 2D spatial-context, we transform a 2D spatial-context into a 1D sequence-context. Second, we use conditional random fields to model the 1D sequence-context. Our experiments show that LDSM models the semantic relation between annotated object and background, and experiment results outperform the classical automatic image annotation approach (SVM).