{"title":"Fabrication of 500°C Class Thermoelectric Module and Evaluation of its High Temperature Stability","authors":"Y. Hori, T. Ito","doi":"10.1109/ICT.2006.331223","DOIUrl":null,"url":null,"abstract":"Thermoelectric generation technology that can convert thermal energy directly into electrical power has attracted a great deal of public attention as a system of waste heat recovery. To utilize waste heat in the 500-600 degC range effectively, it is necessary to develop a thermoelectric generation module which offers high performance, has a simple structure and can be used in air, etc. This paper describes the fabrication of a 500 degC class thermoelectric generation module, a stacked Bi-Te module and Pb-Te module; the properties of the Bi-Te and Pb-Te thermoelectric elements used, module efficiency and electrical power density for the module. Also the high temperature stability for a high temperature stage module with Pb-Te thermoelectric elements is presented","PeriodicalId":346555,"journal":{"name":"2006 25th International Conference on Thermoelectrics","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 25th International Conference on Thermoelectrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICT.2006.331223","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
Thermoelectric generation technology that can convert thermal energy directly into electrical power has attracted a great deal of public attention as a system of waste heat recovery. To utilize waste heat in the 500-600 degC range effectively, it is necessary to develop a thermoelectric generation module which offers high performance, has a simple structure and can be used in air, etc. This paper describes the fabrication of a 500 degC class thermoelectric generation module, a stacked Bi-Te module and Pb-Te module; the properties of the Bi-Te and Pb-Te thermoelectric elements used, module efficiency and electrical power density for the module. Also the high temperature stability for a high temperature stage module with Pb-Te thermoelectric elements is presented