{"title":"Secure Resource Allocation for Polarization-Based Non-Linear Energy Harvesting Over 5G Cooperative Cognitive Radio Networks","authors":"Fei Wang, Xi Zhang","doi":"10.1109/ICC40277.2020.9148702","DOIUrl":null,"url":null,"abstract":"We address secure resource allocation for the energy harvesting (EH) based 5G cooperative cognitive radio networks (CRNs). To guarantee that the size-limited secondary users (SUs) can simultaneously send the primary user’s and their own information, we assume that SUs are equipped with orthogonally dual-polarized antennas (ODPAs). In particular, we propose, develop, and analyze an efficient resource allocation scheme under a practical non-linear EH model, which can capture the nonlinear characteristics of the end-to-end wireless power transfer (WPT) for radio frequency (RF) based EH circuits. Our obtained numerical results validate that a substantial performance gain can be obtained by employing the non-linear EH model.","PeriodicalId":106560,"journal":{"name":"ICC 2020 - 2020 IEEE International Conference on Communications (ICC)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICC 2020 - 2020 IEEE International Conference on Communications (ICC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICC40277.2020.9148702","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
We address secure resource allocation for the energy harvesting (EH) based 5G cooperative cognitive radio networks (CRNs). To guarantee that the size-limited secondary users (SUs) can simultaneously send the primary user’s and their own information, we assume that SUs are equipped with orthogonally dual-polarized antennas (ODPAs). In particular, we propose, develop, and analyze an efficient resource allocation scheme under a practical non-linear EH model, which can capture the nonlinear characteristics of the end-to-end wireless power transfer (WPT) for radio frequency (RF) based EH circuits. Our obtained numerical results validate that a substantial performance gain can be obtained by employing the non-linear EH model.