H. Kung, Chit-Kwan Lin, Tsung-Han Lin, Stephen J. Tarsa, D. Vlah
{"title":"Measuring diversity on a low-altitude UAV in a ground-to-air wireless 802.11 mesh network","authors":"H. Kung, Chit-Kwan Lin, Tsung-Han Lin, Stephen J. Tarsa, D. Vlah","doi":"10.1109/GLOCOMW.2010.5700251","DOIUrl":null,"url":null,"abstract":"We consider the problem of mitigating a highly varying wireless channel between a transmitting ground node and receivers on a small, low-altitude unmanned aerial vehicle (UAV) in a 802.11 wireless mesh network. One approach is to use multiple transmitter and receiver nodes that exploit the channel's spatial/temporal diversity and that cooperate to improve overall packet reception. We present a series of measurement results from a real-world testbed that characterize the resulting wireless channel. We show that the correlation between receiver nodes on the airplane is poor at small time scales so receiver diversity can be exploited. Our measurements suggest that using several receiver nodes simultaneously can boost packet delivery rates substantially. Lastly, we show that similar results apply to transmitter selection diversity as well.","PeriodicalId":232205,"journal":{"name":"2010 IEEE Globecom Workshops","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"47","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Globecom Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLOCOMW.2010.5700251","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 47
Abstract
We consider the problem of mitigating a highly varying wireless channel between a transmitting ground node and receivers on a small, low-altitude unmanned aerial vehicle (UAV) in a 802.11 wireless mesh network. One approach is to use multiple transmitter and receiver nodes that exploit the channel's spatial/temporal diversity and that cooperate to improve overall packet reception. We present a series of measurement results from a real-world testbed that characterize the resulting wireless channel. We show that the correlation between receiver nodes on the airplane is poor at small time scales so receiver diversity can be exploited. Our measurements suggest that using several receiver nodes simultaneously can boost packet delivery rates substantially. Lastly, we show that similar results apply to transmitter selection diversity as well.