Optimizing parameters of trajectory representation for movement generalization: robotic throwing

A. Gams, T. Petrič, L. Žlajpah, A. Ude
{"title":"Optimizing parameters of trajectory representation for movement generalization: robotic throwing","authors":"A. Gams, T. Petrič, L. Žlajpah, A. Ude","doi":"10.1109/RAAD.2010.5524592","DOIUrl":null,"url":null,"abstract":"For effective use of learning by imitation with a robot, it is necessary that the robot can adapt to the current state of the external world. This paper describes an optimization approach that enables the generation of a new motion trajectory, which accomplishes the task in a given situation, based on a library of example movements. New movements are generated by applying statistical methods, where the current state of the world is utilized as query into the library. Dynamic movement primitives are employed as the underlying motor representation. The main contribution of this paper is the optimization of dynamic movement primitives with respect to the kernel function positions and over the entire set of demonstrated movements. We applied the algorithm to a robotic throwing task, where the location of the target is determined by a stereo vision system, which can detect infrared markers. The vision system uses two Nintendo WIIMOTEs for cameras.","PeriodicalId":104308,"journal":{"name":"19th International Workshop on Robotics in Alpe-Adria-Danube Region (RAAD 2010)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"19th International Workshop on Robotics in Alpe-Adria-Danube Region (RAAD 2010)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RAAD.2010.5524592","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

For effective use of learning by imitation with a robot, it is necessary that the robot can adapt to the current state of the external world. This paper describes an optimization approach that enables the generation of a new motion trajectory, which accomplishes the task in a given situation, based on a library of example movements. New movements are generated by applying statistical methods, where the current state of the world is utilized as query into the library. Dynamic movement primitives are employed as the underlying motor representation. The main contribution of this paper is the optimization of dynamic movement primitives with respect to the kernel function positions and over the entire set of demonstrated movements. We applied the algorithm to a robotic throwing task, where the location of the target is determined by a stereo vision system, which can detect infrared markers. The vision system uses two Nintendo WIIMOTEs for cameras.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
面向运动泛化的轨迹表示参数优化:机器人投掷
为了让机器人有效地利用模仿学习,机器人必须能够适应外部世界的当前状态。本文描述了一种基于示例运动库的优化方法,该方法能够生成新的运动轨迹,从而在给定情况下完成任务。通过应用统计方法生成新的运动,其中将世界的当前状态用作对库的查询。动态运动原语被用作潜在的运动表示。本文的主要贡献是对核函数位置和整个演示运动集的动态运动原语进行优化。我们将该算法应用于机器人投掷任务,其中目标的位置由可以检测红外标记的立体视觉系统确定。视觉系统使用两个任天堂wiimote作为摄像头。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Programming and control of humanoid robot football playing tasks Adaptive sliding mode controller design for mobile robot fault tolerant control. introducing ARTEMIC. Isotropy in any RR planar dyad under active joint stiffness regulation Optimizing parameters of trajectory representation for movement generalization: robotic throwing A novel approach to the Model Reference Adaptive Control of MIMO systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1