{"title":"22.7 A Programmable Wireless EEG Monitoring SoC with Open/Closed-Loop Optogenetic and Electrical Stimulation for Epilepsy Control","authors":"Shuenn-Yuh Lee, Chieh Tsou, Peng-Wei Huang, Po-Hao Cheng, Chi-Chung Liao, Zhan-Xien Liao, Hao-Yun Lee, Chou-Ching K. Lin, Chia-Hsiang Hsieh","doi":"10.1109/ISSCC.2019.8662385","DOIUrl":null,"url":null,"abstract":"The number of studies on closed-loop detection and electrical stimulation systems [1]–[2] for efficient control of neurological disorders is increasing, because recent clinical studies have shown their efficiency and usefulness in symptom suppression. Electrical stimulation can produce enough stimulation to affect a large range of nerves. However, all nerves near the stimulus are excited and hurt, and over time, currents start to exceed acceptable limits. Therefore, optogenetic stimulation [3]–[4] has become compelling in recent years due to several advantages: (1) no artificial noise on the EEG; (2) ability to stimulate specific nerves; and (3) no injurious effects on nerves. In this study, a wireless programmable stimulating system-on-chip (WPSSoC) is reported that provides wireless open/closed-loop optogenetic and electrical stimulation to improve treatment for epilepsy suppression. The system is demonstrated on programmable stimulation parameters wirelessly controlled by a software Graphical User Interface (GUI) on a computer. Moreover, an animal experiment conducted on optogenetic tissue was successful, thereby demonstrating that the nerve injury on optogenetic stimulation is lower than that of electrical stimulation.","PeriodicalId":265551,"journal":{"name":"2019 IEEE International Solid- State Circuits Conference - (ISSCC)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Solid- State Circuits Conference - (ISSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC.2019.8662385","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15
Abstract
The number of studies on closed-loop detection and electrical stimulation systems [1]–[2] for efficient control of neurological disorders is increasing, because recent clinical studies have shown their efficiency and usefulness in symptom suppression. Electrical stimulation can produce enough stimulation to affect a large range of nerves. However, all nerves near the stimulus are excited and hurt, and over time, currents start to exceed acceptable limits. Therefore, optogenetic stimulation [3]–[4] has become compelling in recent years due to several advantages: (1) no artificial noise on the EEG; (2) ability to stimulate specific nerves; and (3) no injurious effects on nerves. In this study, a wireless programmable stimulating system-on-chip (WPSSoC) is reported that provides wireless open/closed-loop optogenetic and electrical stimulation to improve treatment for epilepsy suppression. The system is demonstrated on programmable stimulation parameters wirelessly controlled by a software Graphical User Interface (GUI) on a computer. Moreover, an animal experiment conducted on optogenetic tissue was successful, thereby demonstrating that the nerve injury on optogenetic stimulation is lower than that of electrical stimulation.