{"title":"High level event driven thermal estimation for thermal aware task allocation and scheduling","authors":"Jin Cui, D. Maskell","doi":"10.1109/ASPDAC.2010.5419781","DOIUrl":null,"url":null,"abstract":"Thermal aware scheduling(TAS) is an important system level optimization for CMP and MPSoC. An event driven thermal estimation method which can assist dynamic TAS is proposed in this paper. The event driven thermal estimation is based upon a thermal map which is updated only when a high level event occurs. To minimize the overhead, while maintaining the estimation accuracy, the prebuilt look-up-tables and the superposition principle are used to speed up the solution of the thermal RC network. Experimental results show our method is accurate, producing thermal estimations of similar quality to existing thermal simulators, while having a considerably reduced computational complexity. Our event driven thermal estimation technique is significantly better, in terms of accuracy, than existing TAS schedulers, making it highly suitable for integration into the OS kernel.","PeriodicalId":152569,"journal":{"name":"2010 15th Asia and South Pacific Design Automation Conference (ASP-DAC)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 15th Asia and South Pacific Design Automation Conference (ASP-DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASPDAC.2010.5419781","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
Thermal aware scheduling(TAS) is an important system level optimization for CMP and MPSoC. An event driven thermal estimation method which can assist dynamic TAS is proposed in this paper. The event driven thermal estimation is based upon a thermal map which is updated only when a high level event occurs. To minimize the overhead, while maintaining the estimation accuracy, the prebuilt look-up-tables and the superposition principle are used to speed up the solution of the thermal RC network. Experimental results show our method is accurate, producing thermal estimations of similar quality to existing thermal simulators, while having a considerably reduced computational complexity. Our event driven thermal estimation technique is significantly better, in terms of accuracy, than existing TAS schedulers, making it highly suitable for integration into the OS kernel.