Pub Date : 2010-01-18DOI: 10.1109/ASPDAC.2010.5419876
Fang-Yu Fan, Hung-Ming Chen, I-Min Liu
In today's VLSI designs, crosstalk effects causing chips to fail or suffer from low yields have become one of the very essential design issues. In this paper, we attempt to reduce crosstalk noise in logic and physical synthesis stage, which is usually done in post-layout stage. We propose a technology mapping method that can reduce the crosstalk noise while meeting delay constraints. The algorithm employing a dynamic programming framework in the matching phase determines the routing of fanin nets for all the matches to estimate the track utilization in probability. These routings are stored as virtual routing maps to compute the crosstalk noise during the covering phase, which will select the crosstalk-minimal solutions satisfying the delay constraints rather than the delay-minimal ones. This problem is different from wire congestion-driven technology mapping and our experimental results are encouraging. We experiment on the benchmark circuits in 90nm process, the results show that, with 7% of area increase, our proposed approach is effective to improve the crosstalk by 28% on average, as compared to the conventional delay- and/or congestion-driven technology mapping. The overall result is better than the efforts done in post-layout stage, and has been validated by modern commercial EDA tools. In addition, this proposed approach can be applied in local technology remapping at post-placement/post-routing and ECO stages as well.
{"title":"Technology mapping with crosstalk noise avoidance","authors":"Fang-Yu Fan, Hung-Ming Chen, I-Min Liu","doi":"10.1109/ASPDAC.2010.5419876","DOIUrl":"https://doi.org/10.1109/ASPDAC.2010.5419876","url":null,"abstract":"In today's VLSI designs, crosstalk effects causing chips to fail or suffer from low yields have become one of the very essential design issues. In this paper, we attempt to reduce crosstalk noise in logic and physical synthesis stage, which is usually done in post-layout stage. We propose a technology mapping method that can reduce the crosstalk noise while meeting delay constraints. The algorithm employing a dynamic programming framework in the matching phase determines the routing of fanin nets for all the matches to estimate the track utilization in probability. These routings are stored as virtual routing maps to compute the crosstalk noise during the covering phase, which will select the crosstalk-minimal solutions satisfying the delay constraints rather than the delay-minimal ones. This problem is different from wire congestion-driven technology mapping and our experimental results are encouraging. We experiment on the benchmark circuits in 90nm process, the results show that, with 7% of area increase, our proposed approach is effective to improve the crosstalk by 28% on average, as compared to the conventional delay- and/or congestion-driven technology mapping. The overall result is better than the efforts done in post-layout stage, and has been validated by modern commercial EDA tools. In addition, this proposed approach can be applied in local technology remapping at post-placement/post-routing and ECO stages as well.","PeriodicalId":152569,"journal":{"name":"2010 15th Asia and South Pacific Design Automation Conference (ASP-DAC)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2010-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116887473","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2010-01-18DOI: 10.1109/ASPDAC.2010.5419781
Jin Cui, D. Maskell
Thermal aware scheduling(TAS) is an important system level optimization for CMP and MPSoC. An event driven thermal estimation method which can assist dynamic TAS is proposed in this paper. The event driven thermal estimation is based upon a thermal map which is updated only when a high level event occurs. To minimize the overhead, while maintaining the estimation accuracy, the prebuilt look-up-tables and the superposition principle are used to speed up the solution of the thermal RC network. Experimental results show our method is accurate, producing thermal estimations of similar quality to existing thermal simulators, while having a considerably reduced computational complexity. Our event driven thermal estimation technique is significantly better, in terms of accuracy, than existing TAS schedulers, making it highly suitable for integration into the OS kernel.
{"title":"High level event driven thermal estimation for thermal aware task allocation and scheduling","authors":"Jin Cui, D. Maskell","doi":"10.1109/ASPDAC.2010.5419781","DOIUrl":"https://doi.org/10.1109/ASPDAC.2010.5419781","url":null,"abstract":"Thermal aware scheduling(TAS) is an important system level optimization for CMP and MPSoC. An event driven thermal estimation method which can assist dynamic TAS is proposed in this paper. The event driven thermal estimation is based upon a thermal map which is updated only when a high level event occurs. To minimize the overhead, while maintaining the estimation accuracy, the prebuilt look-up-tables and the superposition principle are used to speed up the solution of the thermal RC network. Experimental results show our method is accurate, producing thermal estimations of similar quality to existing thermal simulators, while having a considerably reduced computational complexity. Our event driven thermal estimation technique is significantly better, in terms of accuracy, than existing TAS schedulers, making it highly suitable for integration into the OS kernel.","PeriodicalId":152569,"journal":{"name":"2010 15th Asia and South Pacific Design Automation Conference (ASP-DAC)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2010-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115252023","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pulsed-latch inherits the advantage of latch in less sequencing overhead while taking the advantage of flip-flop in its convenience during timing analysis. Even though this advantage comes from the fact that pulsed-latch uses a short pulse, it is still capable of a small amount of time borrowing. A problem of allocating pulse width (out of a few predefined widths), where each width is modeled by a random variable, is formulated for minimizing the clock period of pulsed-latch circuits; this is equivalent to assigning a random variable that represents the amount of time borrowed by the combinational block between each latch pair. A statistical approach is important in this problem because assuming +3σ of all pulse widths does not represent the worst case. An allocation algorithm called SPWA as well as an algorithm to compute timing yield is proposed. In experiments with 45-nm technology, compared to the case of no time borrowing, the clock period was reduced by 12.2% and 11.7% on average when the yield constraint Yc is 0.85 and 0.95, respectively; this is compared to the deterministic counterpart called DPWA, which reduced the clock period by 7.6% and 7.3%. More importantly, DPWA failed to satisfy the yield constraints in four (out of eleven) circuits while the yield constraints were always satisfied in SPWA.
{"title":"Statistical time borrowing for pulsed-latch circuit designs","authors":"Seungwhun Paik, Lee-eun Yu, Youngsoo Shin","doi":"10.5555/1899721.1899879","DOIUrl":"https://doi.org/10.5555/1899721.1899879","url":null,"abstract":"Pulsed-latch inherits the advantage of latch in less sequencing overhead while taking the advantage of flip-flop in its convenience during timing analysis. Even though this advantage comes from the fact that pulsed-latch uses a short pulse, it is still capable of a small amount of time borrowing. A problem of allocating pulse width (out of a few predefined widths), where each width is modeled by a random variable, is formulated for minimizing the clock period of pulsed-latch circuits; this is equivalent to assigning a random variable that represents the amount of time borrowed by the combinational block between each latch pair. A statistical approach is important in this problem because assuming +3σ of all pulse widths does not represent the worst case. An allocation algorithm called SPWA as well as an algorithm to compute timing yield is proposed. In experiments with 45-nm technology, compared to the case of no time borrowing, the clock period was reduced by 12.2% and 11.7% on average when the yield constraint Yc is 0.85 and 0.95, respectively; this is compared to the deterministic counterpart called DPWA, which reduced the clock period by 7.6% and 7.3%. More importantly, DPWA failed to satisfy the yield constraints in four (out of eleven) circuits while the yield constraints were always satisfied in SPWA.","PeriodicalId":152569,"journal":{"name":"2010 15th Asia and South Pacific Design Automation Conference (ASP-DAC)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2010-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116534687","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2010-01-18DOI: 10.1109/ASPDAC.2010.5419873
Ju-Yueh Lee, Yu Hu, R. Majumdar, Lei He, Minming Li
We present a fault-tolerant post-mapping resynthesis for FPGA-based designs that exploits the dual-output feature of modern FPGA architectures to improve the reliability of a mapped circuit against faults. Emerging FPGA architectures, such as 6-LUTs in Xilinx Virtex-5 and 8-input ALMs in Altera Stratix-III, have a secondary LUT output that allows access to non-occupied SRAM bits. We show that this architectural feature can be used to build redundancy for fault masking with limited area and performance overhead. Our algorithm improves reliability of a mapping by performing two basic operations: duplication (in which free configuration bits are used to duplicate a logic function whose value is obtained at the secondary output) and encoding (in which two copies of the same logic function are ANDed or ORed together in the fanout of the duplicated logic). The problem of fault tolerant post-mapping resynthesis is then formulated as the optimal duplication and encoding scheme that ensures the minimal circuit fault rate w.r.t. a stochastic single fault model. We present an ILP formulation of this problem and an efficient algorithm based on generalized network flow. On MCNC benchmarks, experimental results show that for combinational circuits the proposed approach improves mean-time-to-failure(MTTF) by 27% with 4% area overhead, and the proposed approach with explicit area redundancy improves MTTF by 113% with 36% area overhead, compared to the baseline mapping by ABC. This provides a viable fault tolerance solution for non-mission critical applications compared to TMR (triple modular redundancy) which has a 5x–6x area overhead.
{"title":"Fault-tolerant resynthesis with dual-output LUTs","authors":"Ju-Yueh Lee, Yu Hu, R. Majumdar, Lei He, Minming Li","doi":"10.1109/ASPDAC.2010.5419873","DOIUrl":"https://doi.org/10.1109/ASPDAC.2010.5419873","url":null,"abstract":"We present a fault-tolerant post-mapping resynthesis for FPGA-based designs that exploits the dual-output feature of modern FPGA architectures to improve the reliability of a mapped circuit against faults. Emerging FPGA architectures, such as 6-LUTs in Xilinx Virtex-5 and 8-input ALMs in Altera Stratix-III, have a secondary LUT output that allows access to non-occupied SRAM bits. We show that this architectural feature can be used to build redundancy for fault masking with limited area and performance overhead. Our algorithm improves reliability of a mapping by performing two basic operations: duplication (in which free configuration bits are used to duplicate a logic function whose value is obtained at the secondary output) and encoding (in which two copies of the same logic function are ANDed or ORed together in the fanout of the duplicated logic). The problem of fault tolerant post-mapping resynthesis is then formulated as the optimal duplication and encoding scheme that ensures the minimal circuit fault rate w.r.t. a stochastic single fault model. We present an ILP formulation of this problem and an efficient algorithm based on generalized network flow. On MCNC benchmarks, experimental results show that for combinational circuits the proposed approach improves mean-time-to-failure(MTTF) by 27% with 4% area overhead, and the proposed approach with explicit area redundancy improves MTTF by 113% with 36% area overhead, compared to the baseline mapping by ABC. This provides a viable fault tolerance solution for non-mission critical applications compared to TMR (triple modular redundancy) which has a 5x–6x area overhead.","PeriodicalId":152569,"journal":{"name":"2010 15th Asia and South Pacific Design Automation Conference (ASP-DAC)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2010-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122423897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2010-01-18DOI: 10.1109/ASPDAC.2010.5419849
Wen-Hao Liu, Yih-Lang Li, Hui Chen
Given the extensive study of clock skew minimization, in the ISPD 2009 Clock Network Synthesis (CNS) Contest, clock latency range (CLR) was initially minimized across multiple supply voltages under capacitance and slew constraints. CLR approximates the summation of the clock skew and the maximum source-to-sink delay variation for multiple supply voltages. This work develops an efficient three-stage clock tree synthesis flow for CLR minimization. Firstly, a balanced clock tree with small skew is generated. Secondly, buffer insertion and wire sizing minimizes delay variation without violating the slew constraint. Finally, skew is minimized by inserting snaking wires. Experimental results reveal that the proposed flow can complete all ISPD'09 benchmark circuits and yield less CLR than the top three winners of ISPD'09 CNS contest by 59%, 52.7% and 35.4% respectively. Besides, the proposed flow can also run 5.52, 1.86, and 7.54 times faster than the top three winners of ISPD'09 CNS contest respectively.
{"title":"Minimizing clock latency range in robust clock tree synthesis","authors":"Wen-Hao Liu, Yih-Lang Li, Hui Chen","doi":"10.1109/ASPDAC.2010.5419849","DOIUrl":"https://doi.org/10.1109/ASPDAC.2010.5419849","url":null,"abstract":"Given the extensive study of clock skew minimization, in the ISPD 2009 Clock Network Synthesis (CNS) Contest, clock latency range (CLR) was initially minimized across multiple supply voltages under capacitance and slew constraints. CLR approximates the summation of the clock skew and the maximum source-to-sink delay variation for multiple supply voltages. This work develops an efficient three-stage clock tree synthesis flow for CLR minimization. Firstly, a balanced clock tree with small skew is generated. Secondly, buffer insertion and wire sizing minimizes delay variation without violating the slew constraint. Finally, skew is minimized by inserting snaking wires. Experimental results reveal that the proposed flow can complete all ISPD'09 benchmark circuits and yield less CLR than the top three winners of ISPD'09 CNS contest by 59%, 52.7% and 35.4% respectively. Besides, the proposed flow can also run 5.52, 1.86, and 7.54 times faster than the top three winners of ISPD'09 CNS contest respectively.","PeriodicalId":152569,"journal":{"name":"2010 15th Asia and South Pacific Design Automation Conference (ASP-DAC)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2010-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122748332","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2010-01-18DOI: 10.1109/ASPDAC.2010.5419787
B. Boghrati, S. Sapatnekar
It is common for a designer to consider making several small changes to a power grid, corresponding to “what if” scenarios, in an attempt to improve its performance. To evaluate the effects of each incremental change, the circuit must go through incremental analysis. This paper presents a computationally efficient and accurate method for fast and accurate incremental analysis using random walks to identify a region of influence (RoI) of a change, so that this RoI can then be analyzed by any other solver. Our experimental results demonstrate the accuracy and computational efficiency of this method.
{"title":"Incremental solution of power grids using random walks","authors":"B. Boghrati, S. Sapatnekar","doi":"10.1109/ASPDAC.2010.5419787","DOIUrl":"https://doi.org/10.1109/ASPDAC.2010.5419787","url":null,"abstract":"It is common for a designer to consider making several small changes to a power grid, corresponding to “what if” scenarios, in an attempt to improve its performance. To evaluate the effects of each incremental change, the circuit must go through incremental analysis. This paper presents a computationally efficient and accurate method for fast and accurate incremental analysis using random walks to identify a region of influence (RoI) of a change, so that this RoI can then be analyzed by any other solver. Our experimental results demonstrate the accuracy and computational efficiency of this method.","PeriodicalId":152569,"journal":{"name":"2010 15th Asia and South Pacific Design Automation Conference (ASP-DAC)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2010-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121510455","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2010-01-18DOI: 10.1109/ASPDAC.2010.5419910
Wanping Zhang, Ling Zhang, A. S. Arani, Wenjian Yu, Xiang Hu, Zhi Zhu, A. Engin, Chung-Kuan Cheng
In this paper, we propose an efficient approach to minimize the noise on power networks via the allocation of decoupling capacitors (decap) and controlled equivalent series resistors (ESR). The controlled-ESR is introduced to reduce the on-chip power voltage fluctuation, including both voltage drop and overshoot. We formulate an optimization problem of noise minimization with the constraint of decap budget. A revised sensitivity calculation method is derived to consider both voltage drop and overshoot. The sequential quadratic programming (SQP) algorithm is adopted to solve the optimization problem where the revised sensitivity is regarded as the gradient. Experimental results show that considering voltage drop without overshoot leads to underestimating noise by 4.8%. We also demonstrate that the controlled-ESR is able to reduce the noise by 25% with the same decap budget.
{"title":"On-chip power network optimization with decoupling capacitors and controlled-ESRs","authors":"Wanping Zhang, Ling Zhang, A. S. Arani, Wenjian Yu, Xiang Hu, Zhi Zhu, A. Engin, Chung-Kuan Cheng","doi":"10.1109/ASPDAC.2010.5419910","DOIUrl":"https://doi.org/10.1109/ASPDAC.2010.5419910","url":null,"abstract":"In this paper, we propose an efficient approach to minimize the noise on power networks via the allocation of decoupling capacitors (decap) and controlled equivalent series resistors (ESR). The controlled-ESR is introduced to reduce the on-chip power voltage fluctuation, including both voltage drop and overshoot. We formulate an optimization problem of noise minimization with the constraint of decap budget. A revised sensitivity calculation method is derived to consider both voltage drop and overshoot. The sequential quadratic programming (SQP) algorithm is adopted to solve the optimization problem where the revised sensitivity is regarded as the gradient. Experimental results show that considering voltage drop without overshoot leads to underestimating noise by 4.8%. We also demonstrate that the controlled-ESR is able to reduce the noise by 25% with the same decap budget.","PeriodicalId":152569,"journal":{"name":"2010 15th Asia and South Pacific Design Automation Conference (ASP-DAC)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2010-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121519537","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2010-01-18DOI: 10.1109/ASPDAC.2010.5419794
A. Gerstlauer, G. Schirner
Ever increasing complexity and heterogeneity of system platforms drive the need for a move to higher levels of abstraction accompanied by corresponding design automation tools. The basis for any automated flow are well-defined design models. In this paper, we present an overview and taxonomy of platform modeling at various levels. Experiments demonstrate the benefits of fast yet accurate intermediate models at varying levels for rapid, early design space exploration. Furthermore, paired with automatic model generation and hardware/software synthesis, an automated path from specification to implementation becomes possible.
{"title":"Platform modeling for exploration and synthesis","authors":"A. Gerstlauer, G. Schirner","doi":"10.1109/ASPDAC.2010.5419794","DOIUrl":"https://doi.org/10.1109/ASPDAC.2010.5419794","url":null,"abstract":"Ever increasing complexity and heterogeneity of system platforms drive the need for a move to higher levels of abstraction accompanied by corresponding design automation tools. The basis for any automated flow are well-defined design models. In this paper, we present an overview and taxonomy of platform modeling at various levels. Experiments demonstrate the benefits of fast yet accurate intermediate models at varying levels for rapid, early design space exploration. Furthermore, paired with automatic model generation and hardware/software synthesis, an automated path from specification to implementation becomes possible.","PeriodicalId":152569,"journal":{"name":"2010 15th Asia and South Pacific Design Automation Conference (ASP-DAC)","volume":"399 7","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2010-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114007920","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2010-01-18DOI: 10.1109/ASPDAC.2010.5419881
Hui Kong, Tan Yan, Martin D. F. Wong
In PCB designs, pin positions greatly affect routability of the design. State-of-the-art pin assignment algorithms are guided by simple (heuristic) metrics to estimate routability and thus have no guarantee to obtain a routable solution. In this paper, we present a novel approach to obtain a pin assignment solution that guarantees routability. We show that the problem of simultaneous pin assignment and escape routing can be solved optimally in polynomial time. We then focus on the pin assignment and escape routing for the terminals in a bus, and present algorithmic enhancements as well as discuss the tradeoffs between single-layer and multi-layer implementations. We tested our approach on a state-of-the-art industrial board with 80 buses (over 7000 nets). The pin assignment and escape routing solutions for all the 80 buses are successfully obtainted in less than 5 minutes of CPU time.
{"title":"Optimal simultaneous pin assignment and escape routing for dense PCBs","authors":"Hui Kong, Tan Yan, Martin D. F. Wong","doi":"10.1109/ASPDAC.2010.5419881","DOIUrl":"https://doi.org/10.1109/ASPDAC.2010.5419881","url":null,"abstract":"In PCB designs, pin positions greatly affect routability of the design. State-of-the-art pin assignment algorithms are guided by simple (heuristic) metrics to estimate routability and thus have no guarantee to obtain a routable solution. In this paper, we present a novel approach to obtain a pin assignment solution that guarantees routability. We show that the problem of simultaneous pin assignment and escape routing can be solved optimally in polynomial time. We then focus on the pin assignment and escape routing for the terminals in a bus, and present algorithmic enhancements as well as discuss the tradeoffs between single-layer and multi-layer implementations. We tested our approach on a state-of-the-art industrial board with 80 buses (over 7000 nets). The pin assignment and escape routing solutions for all the 80 buses are successfully obtainted in less than 5 minutes of CPU time.","PeriodicalId":152569,"journal":{"name":"2010 15th Asia and South Pacific Design Automation Conference (ASP-DAC)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2010-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127699984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2010-01-18DOI: 10.1109/ASPDAC.2010.5419807
Jae-Seok Yang, Katrina Lu, Minsik Cho, Kun Yuan, D. Pan
As Double Patterning Lithography(DPL) becomes the leading candidate for sub-30nm lithography process, we need a fast and lithography friendly decomposition framework. In this paper, we propose a multi-objective min-cut based decomposition framework for stitch minimization, balanced density, and overlay compensation, simultaneously. The key challenge of DPL is to accomplish high quality decomposition for large-scale layouts under reasonable runtime with the following objectives: a) the number of stitches is minimized, b) the balance between two decomposed layers is maximized for further enhanced patterning, c) the impact of overlay on coupling capacitance is reduced for less timing variation. We use a graph theoretic algorithm for minimum stitch insertion and balanced density. An additional decomposition constraints for self-overlay compensation are obtained by integer linear programming(ILP). With the constraints, global decomposition is executed by our modified FM graph partitioning algorithm. Experimental results show that the proposed framework is highly scalable and fast: we can decompose all 15 benchmark circuits in five minutes in a density balanced fashion, while an ILP-based approach can finish only the smallest five circuits. In addition, we can remove more than 95% of the timing variation induced by overlay for tested structures.
{"title":"A new graph-theoretic, multi-objective layout decomposition framework for Double Patterning Lithography","authors":"Jae-Seok Yang, Katrina Lu, Minsik Cho, Kun Yuan, D. Pan","doi":"10.1109/ASPDAC.2010.5419807","DOIUrl":"https://doi.org/10.1109/ASPDAC.2010.5419807","url":null,"abstract":"As Double Patterning Lithography(DPL) becomes the leading candidate for sub-30nm lithography process, we need a fast and lithography friendly decomposition framework. In this paper, we propose a multi-objective min-cut based decomposition framework for stitch minimization, balanced density, and overlay compensation, simultaneously. The key challenge of DPL is to accomplish high quality decomposition for large-scale layouts under reasonable runtime with the following objectives: a) the number of stitches is minimized, b) the balance between two decomposed layers is maximized for further enhanced patterning, c) the impact of overlay on coupling capacitance is reduced for less timing variation. We use a graph theoretic algorithm for minimum stitch insertion and balanced density. An additional decomposition constraints for self-overlay compensation are obtained by integer linear programming(ILP). With the constraints, global decomposition is executed by our modified FM graph partitioning algorithm. Experimental results show that the proposed framework is highly scalable and fast: we can decompose all 15 benchmark circuits in five minutes in a density balanced fashion, while an ILP-based approach can finish only the smallest five circuits. In addition, we can remove more than 95% of the timing variation induced by overlay for tested structures.","PeriodicalId":152569,"journal":{"name":"2010 15th Asia and South Pacific Design Automation Conference (ASP-DAC)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2010-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132806815","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}